Time-asymptotic stability of shock profiles
in the presence of diffusion waves

1. Viscous Shock Profiles

Hyperbolic conservation law
ut + f(u)e = puze z€R, ueR" (1)
u(£oo) = ux

(i.e. f' has only real eigenvalues).

Consider a traveling wave solution (profile of a Laxian
shock wave)

u(z,t) = ¢ (x — st)

associated with the simple eigenvalue X of f/, i.e., ¢
solves

pg' =h(¢) = f(¢) —sp—q
¢(F00) = ux ,
where u_, u4, s, g satisfy

Flus) = su_ = f(ugp) —suy =g .
AMu—) > s> Aug)



Goal:

Theorem 1 N
There is a positive constant eg such that if u_, uy

satisfy |lu+ — us«| < e€g, then there exists g > O
(depending on f, u_, uy and 1) such that whenever

the perturbation up — ¢ € H1(R) satisfies
/ o () — é(x — 8o)]| da

+ [T = 50 h0(w) — b = B o < i

for some 6o € R, then the solution u(x,t) to (1) with
data u(-,0) = ug exists for all times t > 0 and has

lim Sup|fu,(:z: t) —¢p(x —st—6)| =0 (2)

t—00 ZCE

with a uniquely determined 6 € R.

Note:
e No convexity assumption.
e Non-zero mass perturbations.



Sketch of proof
1. Diagonalization

Change to moving coordinates x — x — st:
ur + (h(u))z = pugs

where b/ = f' — sl.

3 L = (I;), R = (r;) matrix valued functions such that

L(uw)h' (w)R(u) = A(u) = diag(M\1,.. ., Ap, ..., An)
<0 >0
Ap(u—) > 0> Ap(uy)

2. Decomposition of mass

Letd, 0, 0 (1 < i < mn,i7# p)be defined by
“mass of perturbation”
®.0)
= [ uo(@) — ¢(x) da
— 00

=: 6(ug —u_)+ > 0;0ri(u;0)
1D
where U; 0 - = Usign(i—p) S {U—> U—l—}-
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3. Define decoupled diffusion wave 6 by

0:= > 0;r(u;o)

VED
0.(z.t) = bio ((a: — x0) — Ni(u,) (1 + t))
A 1+¢ ? 2\/m

as solution of
1
0i 1+ (Ni(u)0; + §V>‘i(’“’io) i (u;.0)07 e
_U‘gi,x:c =0
o0
/ 0;(x,t)dr = 0; g
— OO0

The solution of this equation is known explicitly!

o)
It decays as AT

4. Define the coupled linear diffusion wave 7 by

e+ (W' (@)n)e — pnee = E10 + Eay
n(z,0) =0

where E; is a 6-6 coupling term and FE> is a 6-n
coupling term (both bilinear).



5. Decompose solution as

u=¢(-—8)+04+n+uw
l.e.

wi=u—($(- = 5) + 0+ 1)

To do:
e Pointwise estimate for 6.
(Easy: |0(-,t)] < 3% since decoupled
diffusion wave is known explicitly).
e Pointwise estimate for 7.

(Wil look like [n(-, ¢)] < 29LLEL)

e Global existence for w and
suplw(z,t)| = 0 (t = o0)
X

Implies:
Global existence of v and

Sl;p|u —d(-—90)| =0 (t = 00).

[No decay rate, because energy method is used for w].



6. Pointwise estimate for 7 — sketch of proof:

e+ (W' (@)n)e — pnee = E10 + Eay
n(z,0) =0

a) Integrate and diagonalize:

d(z,t) 1= L(¢) JZoon(&, t)da

di + N(¢)dx — pdze =LE; + LE> — ALRyd
— Q,LLLR;CCZ;U —|— ,LLLR:C:cd

1+log(1+4+T)

: . /
Intermediate goal: |d(2’,T")| < (1+T)1/2

b) Define (approximate) Green’s functions:

—; ¢ — (N¥i)e — P g = O
(2, T) = 6(2’ — x)
(dual wave). Leads to
T roo
4@/ T) = [ | LBy + LB~ ALR.d
— 00
+ 2uLRydy + L Ryrd);dadt



Example:
How to estimate

/OT /_O:OWi(ZU,t)||«9k(a:,t)|2da:dt (i = k)

We need:
e The dual wave 1; decays backward in time.
e The dual wave v; is localized (i.e. small outside
a certain region).
e The diffusion wave decays and is localized
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Thus we can focus on the estimate of
T2 o0 2 )
L7 ] G Olleg(e, ) Pdadt (i # k)
T J—00
where “interaction-region” C R x [r1, m].

a) In the case of “early” interaction (7> < %) use the
backward decay of 1);:

™ 2
S Gl [ 107 G Dl e
1

b) In the case of “late” interaction (71 > %) use the
decay of 6,

2 2
SR [0l
1

and obtain
< O(l)
(1412

log(1 4+ T)



Example:
How to estimate

/OT /_O:OIW:U,t)llcb:c(:v)lzld(a:,t)mxdt

Let Ty < T < 7T7 -+ 1. Because of

T roo
/ / . dwdt
0 —00

T roo
g/ / . .dzdt +eo sup ||d(-,1)]
0 J—oo T <t<T

we can focus on the integral over [0, T4 |, where we use
the induction assumption

1+ log(1l+ %)
VIFi

1dC, D)L < VO<t<T

We need:
e The dual wave 1; decays backward in time.
e The dual wave v; is localized (i.e. small outside
a certain region.
e ¢, IS small outside a certain region.
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Thus we can focus on the estimate of

// |¢i($>t)||¢x(x)|2|d(a:,t)|da:dt

interaction
-region

where we have: “interaction-region” C R x [71, 7].

a) In the case of “early” interaction (7> < %) use

< K||1; (-, )Ll @],
and the (backward in time) decay of ;.

b) In the case of “late” interaction (71 > %) use

<Gl [ [l Dl

and the induction assumption on d. It remains to show:
Lemma (vertical estimate)

o0 ™ 2
|7 i, DldtlgsPde < Keg
—00 J —00

It IS non-trivial that this lemma holds in the non-convex
case.



