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1 Introduction
In this article we consider “the distribution of prices paid per share” and derive simple
approximation formulas for its mean and other statistical characteristica. The formulas
we derive are approximations since the data about the distribution of prices paid by
each shareholder for each share is not available. After going through the derivation of
the formula we will end up with recursive definitions of time series which could be
viewed as random coefficient autoregressive (RCA) time series (see [6, 5]).

At this stage, we have no other motivation for the derivation of such formulas
than the mere hope that they should supply some useful information (e.g. whether the
average shareholder paid for his shares less or more than the current value). Indeed,
it turns out that the (approximation to) the mean of the distribution of prices paid per
share is (as one might have expected) a smoothing of the time series of share prices.

In Section 4.1 we will thus re-define it as "moving average" and compare it to the
standard moving averages used to smooth the time series of share prices.

However, it is not our intention to introduce yet another smoothing or moving
average with yet another set of advantages (and of course disadvantages). Instead,
we believe that the value of this article lies in the derivation given in Section 2 of the
article, i.e. viewing the moving averages defined later as mean of distributions which
model (approximate) the distribution of share prices and time value, respectively. For
example the well known Exponential Weighted Moving Average (EWMA) will come
out as a special case of our approximation for stocks with non-volatile volume.

A crucial difference of the method presented to the standard moving averages is
the weightening by volume and the way it is done. To emphasize this we will conclude
this introduction by giving two motivations.

Although we will illustrate the smoothing defined by the volume weighted moving
average in Section 4.1 by applying it to stock price time series, it should be noted
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and emphasized that applications of such weightening schemes are wide and a similar
approach might be useful in a variety of areas. To name a few areas where a volume
weightening scheme like the one we present might be applied:

• Exponentially weighted moving averages (EWMA) and the (generalized) au-
toregressive conditional heteroscedasticity (ARCH, GARCH) model are used to
estimate/model volatilities (see, e.g., [1, 3] or [4], Ch. 15), e.g. in J.P. Morgans
"RiskMetrics" VAR Methodology where an EWMA approach is used.

• In portfolio theory, asset allocation models like e.g. the Black-Literman model
try to find a weighting scheme which maximize the expected excess return over
the risk-free rate while ensuring that there are no dramatic changes. To do so, the
expected return is estimated by various estimators (e.g. a simple moving average
or a regression model). A volume weighting scheme could be introduced here
by altering the definition of "return" or introducing a volume weighting in the
regression model.

• Some exotic derivative products explicitly include averages of stock prices in
their definition (e.g. Asian options). In this context, it should be noted that
splitting one big trade into two smaller ones would generally change a non-
volume weighted average since the price enters twice. The volume weightening
scheme presented here is invariant to such a splitting.

1.1 A motivation (I): the non-sense of disregarding volume
Standard moving average
First consider a three-day moving average (we consider only three days to keep the
example simple). In addition assume that there is only one trade each day (again, this
is only to keep the example simple).

Example 1
day/trade no. price volume

1 $10 100
2 $20 200
3 $30 300

Example 2
day/trade no. price volume

1 $10 300
2 $20 200
3 $30 100

A standard three-day moving average is constructed by summing up the prices of
the last three days and dividing by the number of days (here three). In both examples
the three-day moving average is $20. The price of $10 at day one is balanced by the
price of $30 at day three. However, volume suggests that in the first example the first
day should be weighted less and the third day should be weighted more and vice versa
in the second example.
Standard volume weighted moving average
The above leads to the insight that the averaging should be volume weighted. A stan-
dard three-day volume weighted moving average is constructed by summing up the
prices of the last three days, each multiplied by the respective volume and divided by
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the total volume over the three days. The three-day volume weighted moving average
in Example 1 is $231

3 . The three-day volume weighted moving average in Example 2
is $162

3 .

Example 3
day/trade no. price volume three-day volume weighted

moving average
1 $30 280 N/A
2 $40 310 N/A
3 $30 30 $35
4 $20 50 $362

3
5 $35 40 $271

2

Example 3 presents the effect of the main defect of the three-day volume weighted
moving average: information prior to the three days is not considered, even if volume
suggests its importance1. In Example 3, the three-day volume weighted moving aver-
age of the first three days is $35. Although on day four we see a lower price of $20,
the three-day volume weighted moving average (now considering only day 2, 3 and 4)
rises. The reason for this behavior is that we no longer consider day 1, and (consider-
ing only day 2, 3 and 4) the high price at high volume on day 2 is becoming even more
important as we "forget" day 1.

At day five the price rises to $35 (more or less the average value), but the three-
day volume weighted moving average drops to $271

2 . This is because on day 5 the
averaging completely ignores day 1 and day 2 and considers only day 3, 4 and 5 among
which day 4 is weighted most. We forget about day 1 and 2, although volume suggests
that they give the most reliable prices.

1.2 A motivation (II): Does today’s price contain all information and
what is the definition of return

A frequent argument against so called "indicators" is that today’s price contains all
information. The argument stems from the assumption of no-arbitrage in complete
markets. Although the author is very skeptic about the theoretical corroboration and
practical meaning of almost all "indicators", the same skepticism should apply to this
argument. Consider the following example:

Example 4
trade no. price volume

1 $48 500
2 $50 500
3 $30 30
4 $35 20

Why should the last price be relevant, if the stock has been traded at a stable
1In fact, any moving average with a fixed time-frame has this problem
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(average) price of $49 at high volume? If for example the investor would like to buy
500 shares it might be that he would get 50 shares for an price around $35 (maybe
from the 50 people who bought the share approximately at that price), but due to the
majority having paid prices around $50 he might have to pay more for the remaining
450 shares.

In other words, disregarding volume (and following the above argument about
today’s price) means disregarding liquidity risk.

In this context one could also reconsider the definition of return. The (potential)
return from trade 1 to trade 2 is $2/$50 = 1%. The (potential) return from trade 3 to
trade 4 is $5/$35 ≈ 14%. However, volume suggest that the return from trade 1 to 2
could be realized on 20 times more shares than the return from trade 3 to 4.

2 The distribution of prices paid per share
We assume that we would know for every share the price its current shareholder had
paid for it. This would give us the distribution of prices paid per share.

This distribution and measures like its mean, variance or Kurtosis are generally
not available. In the following we will model the distribution of prices paid per share
and derive simple recursive approximation formulas for the above mentioned statistical
measures. The approximation formula for the mean could then be tweaked to supply a
smoothing similar (or advantageous) to moving averages. As a first try, let us find an
approximation for the mean of the distribution of prices paid per share:

2.1 An approximation of the mean of the distribution of share prices
Let us assume that at its IPO N stocks are issued for a price p0. In this case (lets say
at time t = 0) the distribution of prices is known and the mean is just

µ0 := p0. (1)

Now assume that we would know the distribution (or at least its mean) at some
time ti and a shareholder would decide to sell ni shares for a price of pi and that the
shareholder had initially paid a price of qi for the shares he sells. Then the mean of the
distribution changes to

µi :=
1
N

(Nµi−1 + ni(pi − qi)) , (2)

where N is the total number of shares floating and µi−1 denotes the mean before the
transaction took place2.

Since qi, i.e. the price the seller initially had paid for the stock he sells, is not
known the above formula is unusable. But since we know that the average price that
has been paid for shares at time ti−1 is µi−1, we might use µi−1 as proxy for qi and
thus introduce µ̃i as

2The formula (2) could be interpreted as follows: From the pool of N shares for which an average
price of µi−1 and thus a total price of Nµi−1 has been paid, ni shares for which a price qi has been paid
are removed and ni shares for which a price pi has been paid are added.
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µ̃0 := p0

µ̃i :=
1
N

(Nµ̃i−1 + ni(pi − µ̃i−1))

=
1
N

((N − ni)µ̃i−1 + nipi) ,

(3)

The resulting recursive definition (3) defines a random coefficient autoregressive
time series model (see e.g. [6]), where the underlying time series is given by the stock
price process pi and the random coefficients are derived from the volume process ni.
We will make a few comments on random coefficient autoregressive time series in
Section 3.

We would like to conclude our discussion of the distribution of share prices by
deriving a simple model (i.e. approximation) for the evolution of the distribution it-
self, which enables us to find similar recursive formulas for approximations of other
statistical measures, e.g. the Standard Deviation, Skewness and Kurtosis.

2.2 An approximation of the distribution of share prices
For our derivation we go back to the starting point, the distribution of share prices.
At time tk the shares have been traded for prices p1, . . . , pk. Thus the distribution
of prices paid per share is given by some numbers vi(tk) specifying the amount of
shares for which a price pi had been paid (i = 1, . . . , k). As before, assume that
upon time tk+1 some nk+1 shares have been traded for a price pk+1. This will alter
the distribution of share prices, now given by some numbers vi(tk+1) specifying the
amount of share for which a price pi had been paid (i = 1, . . . , k + 1)

Clearly, vk+1(tk+1) = nk+1. As in our first derivation (of (3)) we do not know
the change from vi(tk) to vi(tk+1) for i ≤ k, since we do not know what the seller
originally had paid for his shares. What is known, is that the absolute number of shares
floating is constant:

k∑
i=1

vi(tk) =
n+1∑
i=1

vi(tk+1) = N . (4)

One approximative way to model the evolution of vi(t) (consistent with the the ap-
proximation in the derivation of (3)) is

vi(tk+1) :=
N − nk+1

N
vi(tk), vk+1(tk+1) := nk+1 (5)

and initially

v1(t1) := N (6)

Note that at time tk+1 the mean3 of the distribution {(pi, vi(tk+1)) | 1 ≤ i ≤ k + 1} is
3We will drop the tilde and write µk, i.e. µk is the mean of the approximation of the distribution of

prices (in the previous section µk was the mean of the real (but unknown) distribution of prices and µ̃k

its approximation.
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thus given recursively by

µk+1 =
1
N

k+1∑
i=1

vi(tk+1)pi =
N − nk+1

N

1
N

k∑
i=1

vi(tk)pi +
nk+1

N
pk+1

=
1
N

((N − nk+1)µk + nk+1pk+1) .

(7)

Having a model4 (or approximation) for the evolution of distribution of share
prices, we may calculate other statistical measures like standard deviation, Skewness
or Kurtosis.

2.3 Standard Deviation, Skewness and Kurtosis
With the notation above, the Standard Deviation σk, the Skewness Sk and the Kurtosis
Kk of the distribution {(pi, vi(tk)) | 1 ≤ i ≤ k} at time tk are given by

σk =

(
1
N

k∑
i=1

vi(tk) · (pi − µk(tk))2
)1/2

Sk =
1
N

k∑
i=1

vi(tk)
(

pi − µk

σk

)3

Kk =

(
1
N

k∑
i=1

vi(tk)
(

pi − µk

σk

)4
)
− 3

where µk is the mean for which a recursive formula already has been derived above.
To have an algorithm that allows recursive calculation of σk and Kk (more pre-

cisely: to give these quantities as a function of recursively defined values) let us define

q(1)
k =

1
N

k∑
i=1

vi(tk)pi, q(2)
k =

1
N

k∑
i=1

vi(tk)p2
i ,

q(3)
k =

1
N

k∑
i=1

vi(tk)p3
i , q(4)

k =
1
N

k∑
i=1

vi(tk)p4
i ,

i.e. recursively (with vk+1(tk+1) = nk+1)

q(j)
0 := pj

0

q(j)
k+1 :=

N − nk+1

N
q(j)
k +

nk+1

N
pj

k+1

=
N − nk+1(tk+1)

N

1
N

k∑
i=1

vi(tk)p
j
i +

nk+1

N
pj

k+1 =
1
N

k+1∑
i=1

vi(tk+1)p
j
i

4Our model is that at time tk+1 the shareholders sell a percentage of N−nk+1
N of their shares inde-

pendently of what they had originally paid for these shares. This is a crude approximation and other
models should be investigated. The choice of the model of course has an influence on the evolution of
the distribution and thus on the time series of the mean, standard deviation, etc.
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(note that in q(j)
k the j is an index and in pj

k+1 the j is an exponent). With these defini-
tions we find that the Standard Deviation, Skewness and Kurtosis of the distribution at
any time tm is given as a function of the q(j)

m ’s through

σm =

(
1
N

m∑
i=1

vi · (pi − µm)2
)1/2

=
(
q(2)
m − 2µkqm + µ2

m

)1/2

Sm =
1
N

m∑
i=1

vi

(
pi − µm

σm

)3

=
1

σ3
m

(
q(3)
m − 3µmq(2)

m + 3µ2
mq(1)

m − µ3
m

)
Km =

1
N

m∑
i=1

vi

(
pi − µm

σm

)4

− 3

=
1

σ4
m

(
q(4)
m − 4µmq(3)

m + 6µ2
mq(2)

m − 4µ3
mq(1)

m + µ4
m

)

where µm is the mean, i.e. we have µm = q(1)
m ).

2.4 Considering the time value
So far we have considered the prices paid per share and their distribution given. How-
ever it is reasonable to measure the importance (weight) of a price not only by volume
but also by time, i.e. to give a lower weight to prices in the past. Instead of intro-
ducing an additional time weighting without any further motivation, time weighting
can be introduced in a very natural way, namely by replacing all "prices" p by their
corresponding time value. This corresponds to the choice of a numeraire. E.g. assum-
ing a constant (continuously compounding) risk free interest rate r, pi(ti) should be
replaced by er·(ti−t0) · pi(ti). This will lead to recursive formulas similar to the ones
above, e.g. in analogy to (3) an approximation of the mean of the distribution of the
time-value of each share could be given by

µ̃0 := p0

µ̃i :=
1
N

(
Nµ̃i−1 · er·(∆t)i + ni(pi − µ̃i−1 · er·(∆t)i)

)
=

1
N

(
(N − ni)µ̃i−1 · er·(∆t)i + nipi

)
.

(8)

where in addition to the above r is the risk-free interest rate measuring the time-value
of money, (∆t)i := ti−ti−1 is the time between the two transactions (given as fraction
of one year) and ti, ti−1 the time of the transaction (pi, ni), (pi−1, ni−1), respectively.

3 Random coefficient autoregressive (RCA) models
The time series which appeared so far could be described as random coefficient autore-
gressive (RCA) - a generalization of an AR(1) model (for AR models see e.g. [3, 6]).
One of the first in depth studies of RCA models (from a pure mathematical point of
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view) was performed by Nicholls and Quinn [5]. This short section establishes only
the link to between the above models and the RCA models studied in literature. Any
further treatment is beyond the scope of this article.

Nicholls and Quinn, e.g, studied models of the form5

Xi = (A + Bi) · Xi−1 + εi, (9)

where X and εi are p-Variate time-series and A, Bi are p × p-matrices where A is
constant and Bi and εi are independent identically distributed sequences of random
variables with mean zero and constant covariance. Furthermore it is assumed that Bi

and εi are independent.
Our models seem to be not of the form studied in [5]. However it is possible to

rewrite the time series models which appear here as RCA models which then meet
(more or less) the assumptions made in the literature. If we consider a model like
(3) and assume that the volume ni satisfies ni = n̄ + n0

i , such that n0
i and φi =

(pi − (1 + ρ)pi−1) are independent sequences with mean zero (for some number ρ
which may be used to adjust for the expected return in pi), we may write (replacing µ̃i

in (3) by X(1)
i )

X(1)
i =

N − ni

N
· X(1)

i−1 +
ni

N
· pi

=
(

1− n̄

N
− n0

i

N

)
· X(1)

i−1 +
(

n̄

N
+

n0
i

N

)
· pi,

and by defining

X(2)
i = (1 + ρ)X(2)

i−1 + (pi − (1 + ρ)pi−1)

we see that the bivariate time series X := (X(1), X(2))T is of the form (9) with

A =
(

1− n̄
N

n̄
N

0 1 + ρ

)
Bi =

(
−n0

i
N +n0

i
N

0 0

)
εi =

(
0

pi − (1 + ρ)pi−1

)
and initial value X0 = (p0, p0)T .

To get the results found for RCA models in literature (like [5]), we have to assume
that ni−n̄ and the the increments pi−(1+ρ)pi−1 are independent series of independent
identically distributed random numbers with constant covariance and mean zero (for
some fixed number n, ρ).

4 Application: Smoothing of time series: (Elastic) Volume
Weighted Moving Averages

There is a free parameter in the above model: The total number of shares floating,
N . Since the majority of shares is often locked by institutional investors or investors

5The models considered in [5] are a bit more general, namely of the form Xi =
∑n

j=1 (Aj + Bi,j) ·
Xi−j + εi
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that do not participate in the marked frequently, it might be well justified to take these
shares out of the considerations and consider the distribution of share prices only for
the remaining shares.

A first step towards this is to impose a reasonable choice for N , e.g. the total
volume traded within the last 15 days6.

Lowering N will make the recursive update formulas for the distribution (5) or
mean approximation (3) more sensitive in the following sense: Assuming that the
shares are traded at a constant price p, the mean approximation (3) will converge to
this price p as trades continue and the distribution (5) will converge to a one point
distribution. Lowering N will increase the convergence speed.

In the following we will take the time series µk (which is the mean of our model
of the distribution of share prices) as a smoothing of the price process pk and compare
this smoothing to standard moving averages of pk.

To begin, we redefine µk as the elastic volume weighted moving average:

4.1 Definition
Let p0 be the price of a stock at its IPO. Let nk be the volume and pk be the price of
stocks traded in the n-th transaction. Let N be the total number of shares floating.
Definition 1: The Elastic Volume Weighted Moving Average (or Approximated Average
Price Per Share) is defined by the following recursive formula:

eVWMA0 := p0

eVWMAk := eVWMAk−1 · (1− nk

γN
) +

nk

γN
· pk, (10)

where γ is an additional parameter controlling the sensitivity of the average.
Note since for any two values of p0 the difference of the corresponding sequences

of moving average will converge to zero. Thus p0 may also be approximated by a
historical stock price “sufficiently” long ago.
Definition 2: The Elastic Time and Volume Weighted Moving Average (or Approxi-
mated Average Time-Price Per Share) is defined by

eTVWMA0 := p0

eTVWMAk := eTVWMAk−1 · (1− nk

γN
) · er·(∆t)k +

nk

γN
pk, (11)

where in addition to the above r is the risk-free interest rate measuring the time-value
of money, (∆t)k := tk − tk−1 is the time between the two transactions (given as
fraction of one year) and tk, tk−1 the time of the transaction (pk, nk), (pk−1, nk−1),
respectively.

It should be noted that the volume weighting makes this averaging especially suited
for intraday (tick-by-tick) data.

6Such a choice might stem from the assumption that in the average "active market participants" hold
shares for 15 days
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4.2 Comparison to common moving averages and case study
In this section we will give a brief overview of common moving averages used for
smoothing of stock price data (see, e.g., [7]) and give a small case study with real data.
However, it is not our intension to perform an in depth analysis of the quality of dif-
ferent moving averages7. Neither we want to present the moving average smoothing
defined by (10), (11) as something completely new by overemphasizing the differences
to other moving averages. Indeed, when the time-series of the volume is almost con-
stant, the difference of (10) to an Exponential Weighted Moving Average (EWMA -
see below) is marginal. Thus we believe that the value of this article is not only a
refinement of EWMA by introducing volume weighting, but also a justification for
EWMA itself as an approximation to eVWMA for stocks with non-volatilty volume.

4.2.1 Common moving averages

The following lists some of the most common moving averages used (see, e.g., [7]):
Standard moving average (MA(n)):
The standard moving average MA is usually defined through

MA(n) = 1
n

∑n
i=1 pi.

Very common are the 20 day and 30 day moving averages MA(20) and MA(30).
Weighted moving average (WMA(n)):
The weighted moving average WMA is usually defined through

WMA(n) =
∑n

i=1 wipi

for some weights wi > 0 such that
∑n

i=1 wi = 1.
Exponential moving average (EWMA(w)):
The exponential weighted moving average8 EWMA is defined by a recursive formula

EWMA(w)i = (1− w) · EWMA(w)i−1 + w · pi

for some weight 0 < w < 1. It may be approximated by a WMA(n) and weights
wi = (1− w)n−i · w (if n is sufficiently large).

4.2.2 Example: A small case study

We will now compare the elastic volume weighted moving average to a non-weighted
moving average with fixed time period (30 days) and an exponentially weighted mov-
ing average with fixed weight (0.95). Although - as should be clear from the introduc-
tion - the eVWMA is especially suited for tick-by-tick data and taking daily (closing)
price and volume already introduces an inconsistent weighting, we will not take the ef-
fort to calculate the eVWMA using tick-by-tick data. There are two simple reasons to

7It is not even clear what a measure of the quality of the smoothing would be.
8EWMAs are beside GARCH models commonly used in volatility modeling, e.g. in J.P. Morgans

"RiskMetrics" VAR Methodology, where EWMA(0.97) is used.
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do so: 1. Tick-by-tick data might be not available for the average user and 2. we want
to make the comparison fair, by using the same (inconsistent) data (i.e. the closing
price) for all three smoothing methods.
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Figure 1: Stock price, eVWMA (red), MA(30) (green), and EWMA (blue) and
Volume9.

Figure 1 and 2 show the stock price, an unweighted 30-day moving av-
erage (MA(30)), an exponentially weighted moving average with weight 0.95
(EWMA(0.95) and the eVWMA. In Figure 1 at Position (1) we see that the eVWMA
changes abruptly and adjusts immediately to the current price due to high volume (vol-
ume is plotted at the bottom of the diagram). The high volume (and the sharp price
drop) suggest that a strong structural break occurred. Both, MA and EWMA adjust to
the new situation with a considerably large delay. The MA adjusts with linear speed,
the EWMA with exponential speed. Note that the latter implies that EWMA adjust
faster at first, but also slower after a while. By definition, it is clear that EWMA and
eVWMA behave similar, when volume is not volatility, as seen at (2). However in
(3) we see that MA and EWMA behave almost identical, whereas eVWMA suddenly
adjust to a new level due a singular high volume.

In Figure 2, the three averages (MA, EWMA and eVWMA) are shown using dif-
ferent data. In Region (2) and (4) we again see that eVWMA and EWMA behave
similarly (which is due to the non-volatile volume). In (1) we see a structural break
down similar (but smaller) to the one Figure 1, where MA adjust linearly and EWMA
exponentially to the new situation. However this phenomena is not as rare as it might
appear and happens also on a small scale, e.g. at (3). (The range (3) is magnified. Note
that the averages in the magnification are the same as before and not some adapted
"short-range" versions). So even on a small scale eVWMA incorporates small struc-
tural breaks (small bursts of bubbles).

9Data of Apple Computer Inc., 362 samples (March 1, 2000 to August 1, 2001), price is closing price.
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Figure 2: Stock price, eVWMA (red), MA(30) (green), and EWMA (blue) and
Volume10.

4.3 Defining Bands via Standard Deviation
In the above we used the consideration of the mean of the approximated distribution
of share prices to introduce an averaging. In stock price analysis it is common to use
some kind of "bands" along the average, i.e. some interval around the average (e.g. so
called Bollinger-Bands, cf. [7]). A movement of the stock price out of such a band
(i.e. the price deviates to much from the average) is then interpreted in some way.

Since our derivation started from the consideration of a distribution, it is natural to
use concepts like standard deviation, confidence level, etc. to construct such "bands"
around the mean. E.g. one could recursively calculated the time series which corre-
sponds to the standard deviation in Section 2.3 and add and subtract some fraction of
it to the eVWMA.

5 Conclusion & Outlook
In this article we gave a first impression on how the (only theoretically available) dis-
tribution of prices paid per share can be approximated by a simple model which then
gives approximation formulas for statistical measures (e.g. mean, standard deviation),
which may suit as replacements for standard moving averages. The resulting smooth-
ing (e.g. the approximated average price paid per share) of the time series of share
prices is less synthetic than non-weighted moving averages or volume weighted mov-
ing averages with fixed underlying time period. We compared this volume weighted
moving average to standard moving averages of stock price time series and derived
"higher order" statistical measures.

10Data of America Online, 356 samples (December 1, 1999 to May 1, 2001), price is closing price.
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We tried to hint towards some of the applications of the volume weighted average
in modeling of stock price process, modeling of volatilty, VAR, theory. However an in
depth discussion of all of these applications is beyond the scope of this paper.

There are many possible improvements to our approach. Here we want to suggest
a few:

1. The modeling of the evolution of the distribution of share prices could be im-
proved, e.g. by introducing a correlation between the price pi and the change of
the corresponding vi from in (5).

2. The number of shares floating γN , controlling the sensitivity in the “averaging
process” could be replaced by a time series itself, e.g. a suitable moving average
of volume.

3. The new kinds of elastic volume weighted moving averages could be used to
replace (unweighed) averages used in the calculation of so called indicators and
thus lead a new zoo of such indicators.
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