
Fast and Robust Monte Carlo CDO Sensitivities
and their

Efficient Object Oriented Implementation

Marius G. Rott∗

mariusgrott@aol.com

Christian P. Fries∗

email@christian-fries.de

May 31, 2005

(Version 0.9.2)

Abstract

In this paper we present a simple yet generic method for fast and robust Monte-Carlo cal-
culation of sensitivities ofCollateralized Debt Obligations(CDOs). The method is product
independent and only relies on four pricings against modified models. From a modeling per-
spective the method is also fairly general as it only relies on the availability of a conditional
cumulative distribution function for the default time. In our presentation we concentrate on
conditional independent loss models as given in [12].

The method we propose in this paper is generic and allows for an equally generic object
oriented implementation which is highly efficient with respect to calculation performance and
coding time (time to market). We present the design pattern of a stochastic iterator, thedefault
time iterator, to create a highly flexible product implementation framework in which any prod-
uct may become the underlying of any other product. Our benchmark calculations indicate
that our method improves calculation time by a factor of around1000 compared to brute force
finite differences. The coding of a new product still remains on a "plug-and-play" level with
very short development time.

∗Marius Rott and Christian Fries are employees of DZ Bank AG. The views, thoughts and opinions expressed in
this paper are those of the authors in their individual capacity and should not in any way be attributed to DZ Bank AG
or to the authors as representatives, officer or employee of DZ Bank AG.

1

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

Contents

1 Introduction 3
1.1 Layout of the Paper .4

2 CDO Conditional Independent Loss Model 5
2.1 Coordinate System of the Default State Space5

3 Product Valuation 7
3.1 Monte Carlo Valuation .7
3.2 Some Variance Reduction Techniques .8

3.2.1 Importance Sampling .8
3.2.2 Stratified Sampling .8

4 CDS Par Spread Sensitivities 9
4.1 Brute Force Approach .9
4.2 The Conditional Cumulative Default Distribution10
4.3 Likelihood Ratio Method .10
4.4 Sensitivity Calculation via Conditional Cumulative Default Distribution11

4.4.1 Adding Standard Variance Reduction14
4.4.2 Forward Starting Transactions .14

4.5 Non-Normal Distributional Assumptions .15
4.5.1 Thet-Distribution .15

5 Implementation 18
5.1 Reuse of Pricing Code for Delta Calculation18
5.2 Efficient Model Interface: The Default Time Iterator Design Pattern19
5.3 Allowing any Product to Become the Underlying of any other: Efficient Im-

plementation of Power CDOs .20

6 Numerical Results 22
6.1 Setup of Test Cases .22
6.2 Credit Spread Sensitivities of a Single Tranche CDO and CDO2 24
6.3 Convergence Properties of CDS Spread Delta Calculations25

7 Concluding Remarks 30

List of Symbols 31

References 32

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

2 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

1 Introduction

Due to the high dimensionality of many of the structures, and also the inherent path dependent
features of some structures, Monte Carlo [3, 11] has been the method of choice for portfo-
lio credit structures. Additionally, Monte Carlo methods are fast and easy to implement and
usually result in pretty generic code without much additional implementation need, when new
structures are introduced. The resulting valuation engine is easy to maintain and extend. How-
ever, there is a price to pay. Most notably Monte Carlo methods are notoriously slow for
the calculation of risk sensitivities, especially for products with discontinuous payoffs. Credit
products are by default discontinuous in the sense that usually default just before and just after
maturity result in very different payments. This feature is mainly responsible for the ineffi-
ciency and instability of Monte Carlo sensitivities for credit structures. Although, they do not
really tackle the root of the problem, some improvements can be achieved by accelerating the
calculation via variance reduction techniques. There are also general methods that tackle the
sensitivity calculation problem directly with some success (e.g. Malliavin Calculus [5] or Like-
lihood Ratio Method [4]). Nonetheless, recently a number of authors have chosen a different
numerical approach. Within a factor reduced model a quasi-analytical solution based on inte-
gration over a discretely approximated portfolio loss distribution allows a stable and efficient
calculation of prices and risk sensitivities of some products. Unfortunately, these methods are
not available for all products and for those available the methods can only be used under some
additional simplifying assumptions. Especially path dependent products can not easily be in-
tegrated in that framework and then Monte Carlo methods are used in practice. They probably
also remain important because there is a tendency in the market to integrate non credit risk
factors in new innovative products in an attempt to widen the margin in an environment of de-
creasing margins for standard products. Integration of new risk factors is probably most easily
achieved in a Monte Carlo setup.

In this paper we show how to efficiently calculate CDS par spread deltas for CDOs within a
factor reduced model (see [1] for further details). Dependency is introduced through a set of un-
derlying factors affecting the underlying credits through latent default indicator variable. The
dependency of each credit on the common factors determines the overall correlation. Usually
only a small number of factors is necessary to introduce an acceptable correlation structure. An
important feature of the model is that conditional on the realization of the common factors the
default indicators, and thus defaults, are mutually independent. As a result theconditional cu-
mulative default distribution, that determines the probability of default given the realization of
the common factors, is often known analytically. We show how analytical knowledge of it can
be used to stabilize Monte Carlo deltas after splitting the calculation into two separate parts.
The two parts measure the effect of a shift in default time conditional on default happening
before maturity of the product on one hand, and the effect of a shift in default time crossing the
maturity of the product on the other. The latter is responsible for the instability of the standard
sensitivities calculation methods. Our tests indicate that the speed up achievable over a brute
force method can be well above a factor of 1000. This allows to calculate the delta sensitivities
in near or even real time. Additional to its methodological efficiency the method presented
remains generic in the sense that it does not dependent on any specific product features.

We view the implementation as the ultimate test for the practical relevance of a method.
We are mainly interested in two aspects:development timeandcalculation time. Often the de-
velopment time may be reduced by a generic (most likely object oriented) framework, which
sometime comes at the expense of an increased calculation time. Whether a method satis-
fies both objectives, fast development time and fast calculation time, often depends on the
generality of the mathematical framework. Ideally it is product or even model independent.
For example, calculating sensitivities bybumping the model(brute force finite differences) is
model and product independent. Its development time is almost zero. However for Monte-
Carlo implementations its performance is often unsatisfactory. Calculating sensitivities using

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

3 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

Malliavin Calculus often greatly improves the performance of Monte-Carlo sensitivity calcu-
lation, however, it is model dependent and to some extend even product dependent. Hence its
implementation is less generic and thus its development time is higher.1 We present an object
oriented design that is adapted to the proposed methodology and realizes a product and almost
model independent delta implementation. The design is centered around a generaldefault time
iterator and combines all the nice features we are interest in from a practical point of view.

1.1 Layout of the Paper

The paper is organized as follows: In Section2 we will present the CDO Conditional Indepen-
dent Loss Model and fix notation. Section3 gives the basics of CDO Monte Carlo evaluation
within this model.

Section4 will present various methods for calculating Monte Carlo sensitivities of CDOs
like Brute Force, Likelihood Ratio and the method proposed here, using the conditional cumu-
lative default distribution.

Section5 gives a brief discussion of the object oriented implementation of the method
proposed showing that it is not only robust but also fast in terms of calculation timeanddevel-
opment time.

Section6 concludes the paper with a presentation of numerical results.

1 For an approach that combines the generality ofbumping the modelwith the robustness of Malliavin Calculus in a
different model context see [6].

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

4 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

2 CDO Conditional Independent Loss Model

In a Factor reduced Conditional Independent Loss Modelthe correlation between them indi-
vidual names of the underlying credit pool is introduced byk-factor model for a latent default
indicator variableZi.

Zi = cTi · x+
√

1− cTi · ciεi i = 1, . . . ,m, (1)

whereci ∈ Rk is the vector of factor loadings2, xT = (x1, . . . , xk) the vector of systematic
factors andεi the idiosyncratic factor. We start with a model wherexj , εi ∼ N (0, 1) are inde-
pendent standard normal distributed, though this distributional assumption may be modified.3

EachZi is also standard normally distributed and, conditional onx, all Zi are independent
(hence the name conditional independent loss model). Given the realization of the default indi-
catorZi of the underlying Credit Default Swap (CDS)i the default timeτi is given implicitly
as solution of

Φ(Zi) = 1− e−
R τi
0 λi(t)dt. (2)

HereΦ denotes the cumulative standard normal distribution andλi is the term structure of
risk neutral forward default intensities of crediti. Following the above rule the probability
P (τi ≤ T) of default of crediti before timeT is given by

P (τi ≤ T) = P (1− e−
R τi
0 λi(t)dt ≤ 1− e−

R T
0 λi(t)dt)

= P (Φ(Zi) ≤ 1− e−
R T
0 λi(t)dt)

= 1− e−
R T
0 λi(t)dt

Thus individual names default according to a Poisson process with a deterministic term
tsructure of default intensitiesλi. In this paper we assume that the underlying products are
CDS with liquid market quotes . Assuming deterministic recovery rates one may bootstrap
market implied default intensitiesλi from the available market market quotes. Denoting the
term structure of CDS par spreads of crediti by si, the term structure of default intensities of
crediti is thus a functionλi(si).

2.1 Coordinate System of the Default State Space

The above model gives the default timesτi as functionals of underlying random variables.
Theses random variables may be viewed as equivalent characterization of the default state in
a different coordinate system and in the following we make have use of this observation. We
will use the following notation:

• Let v1, . . . , vm, w1, . . . , wk denote i.i.d. uniform random variables on[0, 1].

• Let ε1, . . . , εm, x1, . . . , xk denote the normal random variables given by

εi := Φ−1(vi), xj := Φ−1(wi).

• LetZi denote normal random variables given by (1).

• Let τi denote Poisson random variables implicitly given by (2).

Thus the default times are a functional of uniform random variables(v, w) ∈ [0, 1]m×k. We
will make frequent use of the(v, w) space for the efficient calculation of CDS par spread deltas
in Section4.

2 For an algorithm to determine the factor loadings for a given correlation structure see [1].
3 See Section4.5.1for an example using thet distribution.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

5 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

Remark

The distributional assumption of the model may be altered by a change of the functionalΦ.4

The approach thus is a special case offunctional modelling.

4 Section4.5.1shows how to use at distribution.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

6 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

3 Product Valuation

Assuming that loss given default is non-random the value of a credit product that depends on
losses of the underlying credit pool can be written as

V =
∫

Rm

f(τ1, . . . τm)p(τ1, . . . τm)d(τ1, . . . τm)

wheref denotes the discounted value of any cash flow of the product defined as a function of
the default timesτ . The functionp denotes the density (simply assuming that it exists) of the
default times in our model. Defining the uniformly distributed random variable

vi := Φ(εi) (3)

and observing that the default time may be written as a function of default intensities and the
realization of the default indicator one can also write the above integral as

V =
∫

Rk

∫
[0,1]m

f(x, v, λ)dv
k∏

j=1

φ(xj)d(x1, . . . , xk),

where we writef(x, v, λ) for f(τ1(x, v, λ), . . . , τm(x, v, λ)) andv := (v1, . . . , vm).

3.1 Monte Carlo Valuation

For the valuation one simply needs to calculate the value of the integral numerically. Because
of its high dimension paired with the complexity of the integrand one usually resorts to Monte
Carlo techniques. In order to calculate a value for the integral one could use the following
recipe:
For l = 1, . . . , N generate a sample pathωl as follows

(i) Draw a realization(v1(ωl), . . . , vm(ωl), w1(ωl), . . . , wk(ωl)) of them+k i.i.d. uniform
random variablesvi (i = 1, . . . ,m) andwj (j = 1, . . . , k).

(ii) Calculate the associated standard normal random variablesεi = Φ−1(vi) (i = 1, . . . ,m)
andxj = Φ−1(wj) (j = 1, . . . , k).

(iii) CalculateZi (i = 1, . . . ,m) from (1).

(iv) Calculate the default timesτi (i = 1, . . . ,m) from (2).

LoopN times over step (i)-(iv) to createN independent Monte Carlo pathsω1, . . . , ωN . The
valueV of the product is then estimated by

V (λ) ≈ Ṽ (λ) :=
1
N

N∑
l=1

f(x(ωl), v(ωl), λ). (4)

Together with the estimation of the CDO value one may also estimate the standard devia-
tion as an indication of the Monte Carlo error

σ̃V ≈ 1
N

√√√√ N∑
l=1

(f(x(ωl), v(ωl), λ)− Ṽ)2.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

7 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

3.2 Some Variance Reduction Techniques

In order to improve the speed of convergence one may combine (4) with variance reduction
techniques. As examples we indicate how to use importance sampling and stratified sampling.
The brute force delta calculation will automatically benefit from any convergence improvement
for the pricing.

3.2.1 Importance Sampling

We apply importance sampling of the systematic risk factorx by simply shifting the mean and
variance for the distribution ofx, usingN(µ, σ) instead ofN(0, 1). Instead of (4) we then
have the estimate5

Ṽ ≈ 1
N

N∑
k=1

f(x(ωl), v(ωl), λ)σe
1
2 ((x−µ

σ)2−x2),

wherex ∼ N (µ, σ). The likelihood ratioLR(x) = σe
1
2 ((x−µ

σ)2−x2) does not directly depen-
dent on the features of the CDO product. However, a good choice forµ andσ, i.e. a setting
that improves the speed of convergence, usually depends on the features of the specific prod-
uct. See [10] for further details. In [9] it is demonstrated how to apply importance sampling
on the conditional default probabilities of individual credits for the calculation of credit-VaR
in normal copula models.

3.2.2 Stratified Sampling

We also tested the convergence improvement of using stratified sampled systematic risk factors
x. For stratified sampling the state space of the random variable is partitioned into intervals
of equal probability mass and the random generator ensures that the frequency of samples in
each interval exactly correspond to the probability mass of that interval. Within each interval
the random variables are sampled from the associated conditional distribution.

5 Assuming a one factor model for the moment.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

8 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

4 CDS Par Spread Sensitivities

We are interested in calculating the sensitivity ofV with respect to a shift in directionr of the
CDS par spread curves. For example one may be interested in a one basis point parallel shift,
i.e. settingr(t) ≡ 0.00016. Let us denote by

e(s, r) := lim
ξ→0

λ(s+ ξr)− λ(s)
ξ

(5)

the resulting directional shift in default intensitiesλ. Then we have

∇rV (λ(s)) := lim
ξ→0

V (λ(s+ ξr))− V (λ(s))
ξ

= lim
ξ→0

V (λ(s) + ξe)− V (λ(s))
ξ

=: ∇eV (λ).

In order to calculate the sensitivity∇rV (λ(s)) we thus first calculate the impact on the default
intensities (5). It can easily be approximated by bootstrapping default intensities from the
shifted CDS par rate curve, giving a finite difference approximation fore

ẽ(s, r) :=
λ(s+ ξr)− λ(s)

ξ

for some smallξ.
It therefore remains to derive the directional sensitivity∇ẽV (λ) of the valueV as a func-

tion of the default intensity with respect to an directional shiftẽ of the default intensity curve
λ. Thus we are interested in calculating

∇ẽV (λ) = lim
ξ→0

V (λ(s) + ξẽ)− V (λ(s))
ξ

. (6)

In the following we will consider different methods for the numerical approximation of (6).
Purely for the convenience of the exposition of the numerical results we restricted the test
cases in Section6 to 1 basis point parallel shifts of the CDS par rate spreads, i.e. setting
r ≡ 0.0001 in (5). This is done purely for the convenience of the exposition within this paper7.

4.1 Brute Force Approach

Within a Monte Carlo simulation the brute force approach for the derivative bumps the model
input, reevaluates and calculates a simple finite difference approximation by

∇eV (λ) ≈ 1
ξ
∆eṼ :=

1
ξ

(1
N

N∑
k=1

p(x, v, λ+ ξe)− 1
N

N∑
l=1

p(x, v, λ)
)

=
1
N

N∑
k=1

p(x, v, λ+ ξe)− p(x, v, λ)
ξ

.

Not surprisingly the slow speed of convergence, the computational inefficiency and the
instability of results render this approach almost useless. Stability may be improved somewhat
by applying larger shifts of the CDS par rate curve. Even with a large shift of 1%, sometimes
used in practice, the speed of convergence is rather slow. Additionally, the delta now is mixed
with higher order effects. As we see from the test results in Section6 these effects are quite
large. For 1% shifts they mostly ruin the sensitivity calculation8.

6 It is common to normalize the directional shift vectorr to one basis point such that the sensitivity is given as ”price
change per 1 basis point”.

7 Even for a parallel shift of CDS spread sensitivities the associated shift of the term structure of default intensity
will not be parallel.

8 Brute force methods, best mixed with some variance reduction techniques, may still be valuable for stress test
scenarios.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

9 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

The main problem associated with the above brute force calculation is that the delta is
mainly determined by just a few paths of the Monte Carlo simulation. Provided that we apply
a positive shift to the CDS par spreads, i.e. default times decrease, the delta with respect to
underlyingi is mainly determined by the few path that result in additional defaults of underly-
ing i after the shift9. As only a few path meet the above condition, convergence is slow unless
some additional machinery is put to work. One idea is to use any of the available standard
variance reduction techniques, such as stratified sampling, control variates or importance sam-
pling. Any of these techniques (and others) may be easily be applied with some benefit, but
it still seems more promising to rely on a direct approach, using variance reduction just for
some additional benefit where needed. In fact the method derived below can be combined with
any of these techniques for additionally speeding up convergence and we provide some simple
examples below.

4.2 The Conditional Cumulative Default Distribution

Referring to the representation of the default timeτi given in Section2.1we have

P (τi ≤ T | x) = P (Φ(Zi) ≤ P (τi ≤ T) | x) = P
(
Zi ≤ Φ−1 (P (τi ≤ T)) | x

)
= P

(
εi ≤

Φ−1(P (τi ≤ T))− cTi x√
1− cTi ci

| x

)

= P

(
vi ≤ Φ

[
Φ−1 (P (τi ≤ T))− cTi x√

1− cTi ci

]
| x

)

= Φ

(
Φ−1 (P (τi ≤ T))− cTi x√

1− cTi ci

)

= Φ

Φ−1
(
1− e−

R T
0 λi(t)dt

)
− cTi x√

1− cTi ci

 .

Since we will make frequent use this representation we honor the term above with a defi-
nition:

Definition 1 (Conditional cumulative default distribution): Let τi, x be as in Section2
then we denote theconditional cumulative distribution function ofτi by

qi(T, λi|x) := Φ

Φ−1
(
1− e−

R T
0 λi(t)dt

)
− cTi x√

1− cTi ci

 .

qi may be also viewed as the default timeT in (v, w)-coordinates, conditional onx. The
functionT 7→ qi(T, λi | x) is the inverse ofvi 7→ τi(v, w) for a givenx = Φ−1(w).

Note: We includeλi as an extra parameter since we are interested in sensitivities with
respect toλ. Due to the conditioning onx, qi does not depend onλj for j 6= i.

4.3 Likelihood Ratio Method

Following along the lines of [4] one could approximate the derivative as

∇eV (λ) ≈ 1
N

N∑
l=1

f(x(ωl), v(ωl), λ) · (LRi(ωl)− 1) ,

9 For such a path to be a main contributor to the delta it must also result in an additional payout of the default leg of
the CDO, i.e. for a standard single tranche CDO the overall losses in the credit pool must be somewhere near the
relevant range between attachment and detachment points of the tranche.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

10 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

whereLRi denotes the likelihood ratio for the change of measure from the original to the
shifted default intensities for underlying crediti. Denoting byτi, τ̃i the random default times
corresponding to the default intensitiesλ andλ+ ξe, the conditional probability of default are
given by

P (τi ≤ T |x) = P (vi ≤ qi(T, λi|x)) = qi(T, λi|x)

and

P (τ̃i ≤ T |x) = P (vi ≤ qi(T, λi + ξei|x)) = qi(T, λi + ξei|x)

respectively. Taking the derivative with respect toT we get the (conditional) densityψ(ω|x)
of τi

φ(ω|x) =
d

dT
qi(T, λi|x)

∣∣
T=τi(ω)

.

The derivative d
dT qi(T, λi|x) may be given in closed form as

d
dT

qi(T, λi|x) =
d

dT
Φ

[
Φ−1 (P (τi ≤ T))− cTi x√

1− cicTi

]

= φ

[
Φ−1(P (τi ≤ T))− cTi x√

1− cicTi

]
e−

R T
0 λ(s)dsλ(T)√

1− cicTi φ (Φ−1 (P (τi ≤ T)))

and a similar expression for the density ofτ̃i. The likelihood ratio for a shift of default inten-
sities of crediti is thus given by

LRi(ωl) =
φ

[
Φ−1(P (τ̃i≤τi(ωl)))−cT

i x√
1−cicT

i

]
φ

[
Φ−1(P (τi≤τi(ωl)))−cT

i x√
1−cicT

i

] · φ [Φ−1 (P (τi ≤ τi(ωl)))
]

φ [Φ−1 (P (τ̃i ≤ τi(ωl)))]
·

·
(

1 +
e(τi(ωl))
λ(τi(ωl))

)
· e−

R τi(ωl)
0 e(s)ds.

The method can also be applied for simultaneous shifts of multiple underlying credits. Using
the conditional independence feature of the model, the likelihood ratio is given as the product
LR =

∏m
i=1 LRi.10

4.4 Sensitivity Calculation via Conditional Cumulative Default Distribu-
tion

Note that for a givenx credit i defaults after effective date11 Tstart and before maturityT of
the CDO, if and only if

Tstart ≤ τi ≤ T

⇔ Φ−1(P (τi ≤ Tstart)) ≤ Zi ≤ Φ−1(P (τi ≤ T))

⇔ Φ−1(P (τi≤Tstart))−cT
i x√

1−cicT
i

≤ εi ≤ Φ−1(P (τi≤T))−cT
i x√

1−cicT
i

⇔ qi(Tstart, λi|x) ≤ vi ≤ qi(T, λi|x).
10 LikelihoodLRi for underlying not shifted are set to 1.
11 The effective date is relevant only for forward starting transactions.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

11 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

For now we concentrate on spot starting transactions, i.e. settingTstart to 0. We find that
underlying crediti defaults before maturityT , if and only if vi ∼ U [0, 1] is less or equal to
theconditional default barrierqi(T, λi|x) defined above. Using the default barrier allows to
numerically calculate theλ derivative very efficiently. W.l.o.g. we consider a shift of default
intensitiesλ1 of credit 1. To shorten notation letv̄ := (v2, . . . , vm) andq1(λ1) := q1(T, λ1|x)
and d

dλ1
= ∇e1 the directional derivative of the curveλ1 in directione1. Then

d
dλ1

V (λ) =
d

dλ1

∫
Rk

∫
[0,1]m

f(x, v, λ)dv
k∏

j=1

φ(xj)dx

=
∫

Rk

∫
[0,1]m−1

d
dλ1

∫ 1

0

f(x, v, λ)dv1 dv̄
k∏

j=1

φ(xj)dx

=
∫

Rk

∫
[0,1]m−1

d
dλ1

[q1(λ1)∫
0

f(x, v, λ)dv1 +

1∫
q1(λ1)

f(x, v, λ)dv1
]

dv̄
k∏

j=1

φ(xj)dx

=
∫

Rk

∫
[0,1]m−1

[
(f(x, (q1(λ1)−, v̄), λ)− f(x, (q1(λ1)+, v̄), λ))

dq1(λ1)
dλ1

+

q1(T,λ1|x)∫
0

df(x, v, λ)
dλ1

dv1
]

dv̄
k∏

j=1

φ(xj)dx,

where the first integral accounts for a discontinuity of the integrand atv1 = q1. Using the
substitution

v1 → q1 · v1,
∫ q1

0

dv1 →
∫ 1

0

dv1q1 (7)

for the inner integral overdf(x,v,λ)
dλ1

and adding an integration
∫ 1

0
dv1 = 1 over the part that

does not depend onv1 we finally have

d
dλ1

V (λ) =
∫

Rk

∫
[0,1]m

(f(x, (q−1 , v̄), λ)− f(x, (q+1 , v̄), λ))
dq1
dλ1

+
df
dλ1

(x, (v1 · q1, v̄), λ) · q1 dv
k∏

j=1

φ(xj)dx.

For the derivativedf(x,v,λ)
dλ1

we simply use the a finite difference approximation

df
dλ1

(x, v, λ) ≈ 1
ξ
·
(
f(x, v, λ+ ξe1)− f(x, v, λ)

)
for some smallξ and thus get

d
dλ1

V (λ) ≈
∫

Rk

∫
[0,1]m

(
f(x, (q−1 , v̄), λ, T)− f(x, (q+1 , v̄), λ)

)
· dq1
dλ1

+
f(x, (v1 · q1, v̄), λ+ e1)− f(x, (v1 · q1, v̄), λ)

ξ
· q1 dv

k∏
j=1

φ(xj)dx.

(8)

Rewriting (8) using the default timesτ = (τ1(x, v1, λ), . . . , τm(x, vm, λ)), defining τ̄ :=

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

12 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

(τ2, . . . , τm) and the modified12 default timeτ [0,T],ξ
1 := τ1(x, (v1 · q1, v̄), λ+ ξe) we have

d

dλ1
V (λ) ≈

∫
Ω

(
f(T−, τ̄)−f(T+, τ̄)

)
· dq1
dλ1

+
(
f(τ [0,T],ξ

1 , τ̄)−f(τ [0,T],0
1 , τ̄)

)
· q1
ξ

dω. (9)

Thus it turns out that the calculation ofddλ1
V (λ) may be performed by four13 pricing formulas

with a weighted payoff and a modified default timeτ1 replaced byT−, T+, τ [0,T],ξ
1 , τ [0,T],0

1 .
This insight is of great importance for an efficient implementation since it means that the delta
calculation may just reuse the pricing code with a modified default timeτ1 and a modified
Monte-Carlo weight.

Using the same notation as for the Monte-Carlo pricing the Monte-Carlo approximation of
(9) is

d

dλ1
V (λ) ≈ 1

N

N∑
l=1

(
f(T−, τ̄(ωl))− f(T+, τ̄(ωl))

)
· dq1
dλ1

(ωl)

+
f(τ [0,T],ξ

1 (ωl), τ̄(ωl))− f(τ [0,T],0
1 (ωl), τ̄(ωl))

ξ
· q1(ωl).

(10)

The derivativedq1(λ1)
dλ1

can be given in closed form

dq1(λ1)
dλ1

= lim
ξ→0

q1(x, λ1 + ξe1)
dξ

= φ

[
Φ−1(P (τ1 ≤ T))− cT1 x√

1− c1cT1

]
(1− P (τ1 ≤ T))

∫ T

0
e1(s)ds√

1− c1cT1 φ
[
Φ−1(P (τ1 ≤ T))

] .

Instead of taking the limit forξ → 0 one could also take the approximation for a small, but
fixed shiftξ · e (e.g. ξ = 1 ande equal to the shift of the default intensities resulting from a
1BP parallel shift of the CDS par rate curve). This would lead to

q1(x, λ)
dλ1

≈ φ

[
Φ−1(P (τ1 ≤ T))−

∑k
j=1 c1jxj√

1− c1cT1

]
(1− P (τ1 ≤ T))(1− e

R T
0 e(s)ds)√

1− c1cT1 φ
[
Φ−1(P (τ1 ≤ T))

] .

In practice the difference is negligible provided the shifts are sufficiently small.
In (10) we found two contributions to the CDS par spread sensitivity. The first term calcu-

lates the effect that is associated with a shift of the default barrier. It is given by the sensitivity
of the conditional default barrierq with respect to a change inλ times the change in value
of the CDO when the default time of credit 1 crosses the CDO maturityT . The second term
is due to a shift in default time while holding the default barrier fixed. Not surprisingly for
standard CDOs the first part is the main contributor to the overall delta sensitivity14. For the
numerical calculation of the second integral it is quite convenient to use a positive shift for
the CDS par rate15. With a positive shift the default intensities will increase and on each path

12 Note, that the default time with superscript[0,T] are modified so that credit 1 always defaults before maturity
T . Effectively this is achieved by sampling an uniform random variable in the interval[0, q1(T, λ1|x)] and then
proceeding as usual. This modification ensures an efficient calculation of the corresponding integral re-using all
relevant information from the original simulation. Effectively one may view the substitution (7) as an importance
sampling with respect to the random variablev1.

13 This does not mean that the delta is four times slower than pricing with the same number of paths. Since most of
the "pricing"-simulation is re-used and only information pertaining to credit 1 changes the direct delta calculation
is not slowed down by much.

14 The second part is still significant and can not be neglected.
15 For the case that the directional shift of the CDS spreads term structure changes signs, one could to split shift

vector in its negative and positive part. Here we simply assume that the shift vector is non negative through out.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

13 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

defaults after shift will happen earlier compared to the unshifted situation. Thus default times
can not leave the interval[0, T] and integration over[0, qi(T, λi|x)] scans all of the relevant
information. This is important because otherwise jumps in the payout would again destabilize
the calculations16

The method completely avoids the problems associated with the brute force delta calcula-
tion. The jumps of the CDO payout, when defaults lie on different sides of the CDO maturity
before and after the CDS par spread shift, do not appear and not surprisingly as a result we
will see in Section6 that speed of convergence of the method greatly benefits. As an additional
advantage we do not need to assume a large shift of the par spreads in order to numerically
stabilize the results. Shifts of 1BP work very well.

Most of the original simulation is reused for the delta calculation according to (10), so that
only little extra computational work is necessary. One simply needs to adjust pathwise the
information from the original (for determining the CDO price) simulation. The default time
of the credit 1 is replaced with (i) default time just before and just after maturityT or (ii) the
adjusted default time after the shift has been applied. For the second part the substitution (7)
makes sure that only the defaults for credit 1 before maturityT are sampled. The efficiency
gains associated with it by far outweigh the small extra computational work.

The method is completely generic in the sense that it does not dependent on any transaction
specifics. We indicate below how this model feature can be used for a very elegant and efficient
implementation. Once the method has been implemented for one product it is available for
all the others without any additional implementation work. This is very important to keep
maintenance costs low and to speed up time to marked.

4.4.1 Adding Standard Variance Reduction

To improve convergence even more we additionally mix in some simple variance reduction
techniques. Combining the above result with an importance sampling technique for the inte-
gration with respect tox andv1 we get the following result for a Monte Carlo simulation with
N paths

dV

dλ1
≈ 1
N

N∑
l=1

LR(x(ωl))
[(
f(T−, τ̄(ωl))− f(T+, τ̄(ωl))

)
· dq1
dλ1

+
f(τ [0,T],ξ

1 (ωl), τ̄(ωl))− f(τ [0,T],0
1 (ωl), τ̄(ωl))

ξ
q1(ωl)

]
.

As a second alternative we also introduce a stratified sampling for the common factors
x. Its implementation is independent of the delta calculation method and can also be easily
combined with importance sampling.

4.4.2 Forward Starting Transactions

In case we have a forward starting transaction we face the same conceptional problem at the
effective date as for the the maturity date. Default happening just before and just after the ef-
fective date have a very different impact on the value of the CDO. Not surprisingly the method
presented above transfers almost one by one to forward starting transactions by observing17

16 Of course analytically in the limit this problem does vanish. Numerically one could also make the negative shifts
of the CDS par rates small enough so that the barrier is never crossed. However, extremely small shifts may again
lead to numerical problems and are best avoided. Note also that in the model there is zero probability mass on the
boundaryqi(T, λi|x) so we we do not need to consider that event separately.

17 For forward starting transaction with short forward periods the effect is rather small and may be neglected. This is
due to the small likelihood and small changes of default times for early defaults for a given small default intensity
shift.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

14 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

d

dλ1

∫ 1

0

f(x, v, λ)dv1

=
d

dλ1

(∫ q1(Tstart)

0

f(x, v, λ)dv1 +
∫ q1(T)

q1(Tstart)

f(x, v, λ)dv1 +
∫ 1

q1(T)

f(x, v, λ)

)

=
(
f(x, (q1(T, λ1|x)−, ῡ), λ)− f(x, (q1(T, λ1|x)+, ῡ), λ)

) dq1(T, λ1)
dλ1

+
(
f(x, (q1(Tstart, λ1|x), ῡ)−, λ)− f(x, (q1(Tstart, λ1|x)+, ῡ), λ)

) dq1(Tstart, λ1)
dλ1

+
∫ q1(T,λ1|x)

q1(Tstart,λ1|x)

df(x, v, λ)
dλ1

dv1.

Defining q̃1 := 1
2 (q1(T) − q1(Tstart)) the last integral is best split up into two halves that are

then treated separately:∫ q1(T,λ1)

q1(Tstart,λ1)

df(x, v, λ)
dλ1

dv1 =
∫ q1(Tstart)+q̃1

q1(Tstart)

df(x, v, λ)
dλ1

dv1 +
∫ q1(T)

q1(T)−q̃1

df(x, v, λ)
dλ1

dv1.

For the first integral we apply a negative shift to the CDS par yield spreads. In that case
default intensities decrease and defaults times of credit 1 always increases. This ensures that
for the first integral the default times never cross the effective date18. Exactly the opposite is
true for the second integral. Going through the derivation above and defining the modified19

default timesτ [Tstart,·],ξ
1 := τ1(x, (q1(Tstart)+υ1q̃1, ῡ), λ+ξe) andτ [·,T],ξ

1 := τ1(x, (q1(T)−
υ1q̃1, ῡ), λ+ ξe) now leads to

d

dλ1
V (λ) ≈ 1

N

N∑
l=1

(
f(T−, τ̄(ωl))− f(T+, τ̄(ωl))

)
· dq1(T)

dλ1
(ωl)

+
(
f(T−start, τ̄(ωl))− f(T+

start, τ̄(ωl))
)
· dq1(Tstart)

dλ1
(ωl)

+
f(τ [Tstart,·],0

1 (ωl), τ̄(ωl))− f(τ [Tstart,·],−ξ
1 (ωl), τ̄(ωl))

ξ
· q̃1(ωl)

+
f(τ [·,T],ξ

1 (ωl), τ̄(ωl))− f(τ [·,T],0
1 (ωl), τ̄(ωl))

ξ
· q̃1(ωl).

4.5 Non-Normal Distributional Assumptions

The method transfers easily to other distributions with known densities. As an example we
provide some details for the case of thet distribution.

4.5.1 Thet-Distribution

Using at distribution thek factor model now is given by20

18 They also never cross the maturity date as the upper integration bound provided that the shifts are small and
effective date and maturity do not lie very close together.

19 Now the default times are modified such that default always occurs in the interval[Tstart, ·] for the first integral
and[·, T] for the second integral. The mid point· depends onx and is therefore random.

20 See [1] for further details.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

15 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

Yi =
k∑

j=1

cijxj +
√

1− cicTi εi i = 1, . . . ,m

Zi = Yi

√
ν

g
,

(11)

whereXi ∼ N (0, 1) andg ∼ χ2(ν) with ν degrees of freedom. Assuming thatXi andg
are independent,Zi is t distributed withν degrees of freedom and a density given by

t′ν(z) =
Γ(ν+1

2)
Γ(ν

2)
√
νπ

(
1 +

z2

ν

)−1

=
1

b
(

ν
2 ,

1
2

)√
ν

(
1 +

z2

ν

)−1

.

Analog to above the value of the product is now given by

V =
∫ ∞

0

∫
Rk

∫
[0,1]m

f(x, v, λ)dv
k∏

j=1

φ(xj)dx(χ2)′(g)dg

and the corresponding Monte Carlo simulation would use the following recipe:
For l = 1, . . . , N generate a sample pathωl as follows

(i) Draw a realization(v1(ωl), . . . , vm(ωl), w1(ωl), . . . , wk(ωl), q(ωl)) of them + k + 1
i.i.d. uniform random variablesvi (i = 1, . . . ,m), wj (j = 1, . . . , k) andq.

(ii) Calculate aχ2 distributed random variableg = (χ2)−1(q) and standard normal random
variablesεi = Φ−1(vi) (i = 1, . . . ,m) andxj = Φ−1(wj) (j = 1, . . . , k).

(iii) CalculateZi (i = 1, . . . ,m) from (11).

(iv) Calculate the default timesτi (i = 1, . . . ,m) by invertingtν(Zi) = 1− e−
R τi
0 λi(t)dt.

LoopN times over step (i)-(iv) to createN independent Monte Carlo pathsω1, . . . , ωN .
The valueV of the product is then estimated by

V (λ) ≈ Ṽ (λ) :=
1
N

N∑
l=1

f(x(ωl), g(ωl), v(ωl), λ). (12)

As above we can derive for each crediti a conditional default barrierqi(T, λi|x, g), now
conditional on the realization ofx andg. We find, that crediti defaults, if and only if

Vi = Φ(εi) ≤ Φ

[√
g
ν t
−1
ν (P (τi ≤ T))− cTi x√

1− cicTi

]
︸ ︷︷ ︸

=qi(T,λi|x,g)

.

The derivative ofqi(T, λi|x, g) with respect toλi, needed for the direct delta calculation,
now is given by

dqi(T, λi|x, g)
dλi

= φ

[√
g
ν t
−1
ν (P (τ1 ≤ T))− cT1 x√

1− c1cT1

]√
g

ν

(1− P (τ1 ≤ T))
∫ T

0
e(s)ds√

1− c1cT1 t
′
ν

[
t−1
ν (P (τ1 ≤ T))

]
= φ

 t−1
ν (P (τi ≤ T))− cTi x√

ν
g

√
1− cicTi

 √gb (1
2 ,

ν
2

)√
1− cicTi

(1− P (τi ≤ T))
∫ T

0
e(s)ds[

1 + t−1(P (τi≤T))2

ν

]− ν+1
2

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

16 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

and leads to a similar recipe as for the normal method. Again the method is completely
generic. It does not depend on any product specifics and can be used with the variance reduc-
tion schemes applied above or any other available in the literature. Code changes necessary to
introduce at distribution are limited to just a few lines.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

17 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

5 Implementation

The proposed method for sensitivity calculation allows for an object oriented implementation
which is highly efficient with respect to calculation performance and coding time (time to
market). Using the design pattern of a stochastic iterator, the default time iterator, we are
able to create a highly flexible product implementation framework in which any product may
become the underlying of any other product. In this section we will sketch the basic ideas
related to the implementation.21

5.1 Reuse of Pricing Code for Delta Calculation

From equation (10) it is clear that the calculation of delta relies on the pricing with modified
default times. Thus pricing and delta calculation may share a major portion of the pricing code
if one considers the method

/ **
* @return Returns the vector of values by modifiyng the models default times of unterlying <code>underlyingID</code>

* /
double [] getValueForGivenDefaultTimes(ConditionalLossModel model, int underlyingID, double [] defaultTimes)

which returns the vector of values by path (random variable) where the value has been
calculated by taking the given model and forcing the default times of a the underlying speci-
fied byunderlyingID to the provided default times. Using the convention that a non valid
underlyingID or an empty default time vector will result in no modification of the under-
lying model the code may be used for pricing as well.

Implementing the methodgetValueForGivenDefaultTimes thus has a striking ad-
vantage: For pricing and delta there is only one common location where the product specific
pricing code has to be implemented. Once the pricing code for a product is written the delta is
available immediately. This again shows that the delta calculation with our method is indepen-
dent of any product features22.

UsinggetValueForGivenDefaultTimes the pricing becomes
/ **

* @return Returns the value of the product

* /
double getValue(ConditionalLossModel model) {

double [] valueOnPath = getValueForGivenDefaultTimes(model, 0, null);

// Calculate value
double value = 0.0;
for (int pathIndex = 0; pathIndex<model.getNumberOfPaths(); pathIndex++) value += valueOnPath[pathIndex];

return value / model.getNumberOfPaths();
}

and the calculation of delta is performed through
/ **

* @return Returns the delta of the product

* /
double getDelta(ConditionalLossModel model, int underlyingID, double shift) {

double timeHorizon = tenorStructure[tenorStructure.length-1];

// Get values with default of underlying at maturity
double [] valueDefault = getValueForGivenDefaultTimes(model, underlyingID, timeHorizon);

// Get values with non default of underlying
double [] valueNonDefault = getValueForGivenDefaultTimes(model, underlyingID, timeHorizon+1);

// Get derivative of default barrier for corresponding underlying
double [] defaultBarrierDerivative = model.getBarrierDerivative(underlyingID, timeHorizon);

// Get modified default times
double [] modifiedDefaultTimesBeforeShift = model.getModifiedDefaultTimes(underlyingID, 0.0);
double [] modifiedDefaultTimesAfterShift = model.getModifiedDefaultTimes(underlyingID, shift);

// Get values with modified default times with and without shift
double [] valueModDefault

= getValueForGivenDefaultTimes(model, underlyingID, modifiedDefaultTimesBeforeShift);

double [] valueModDefaultWithShift
= getValueForGivenDefaultTimes(model, underlyingID, modifiedDefaultTimesAfterShift);

21 The code fragments shown are given in the JavaTM language.
22 Apart from the conditional cumulative default time distribution functionq, the delta calculation could also be

viewed as model independent.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

18 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

// Get default barrier
double [] defaultBarrier = model.getDefaultBarrier(underlyingID, timeHorizon);

// Calculate delta and average over values
double delta = 0.0;
for (int pathIndex = 0; pathIndex<model.getNumberOfPaths(); pathIndex++) {

delta +=
(valueDefault[pathIndex] - valueNonDefault[pathIndex]) * defaultBarrierDerivative[pathIndex]

+ (valueModDefaultWithShift[pathIndex] - valueModDefault[pathIndex]) * defaultBarrier[pathIndex] / shift;
}

return delta / model.getNumberOfPaths();
}

The methodsgetValue , getValueForGivenDefaultTimes and getDelta are
members of the product class which may derive from an abstract product base class. Fol-
lowing the idea of havinggetValueForGivenDefaultTimes as the single place of a
products pricing code the methodsgetValue andgetDelta may be implemented on the
level of this abstract product base class.

5.2 Efficient Model Interface: The Default Time Iterator Design Pattern

We propose to implement the actual pricing code of the product by using an iterator design
pattern [7] for the default times. Thisdefault time iteratorefficiently provides a sequence of
default times and corresponding losses of the underlyings for a given time period. Since default
times are stochastic the iterator is stochastic itself, i.e. it carries a path index.23

public interface DefaultTimeIterator {

// @brief Modifies the default times of underlying <code>underlyingID</code> to <code>defaultTimes</code>
void setModifiedDefaultTimes(int underlyingID, double [] defaultTimes);

// @brief Restricts the iterator to a specific range. Only default times in (periodStart,periodEnd] will be
returned

void setPeriod(double periodStart, double periodEnd);

void nextEntry(int path);

boolean hasEntry(int path);

// @return current entry: default time
double getTime(int path);

// @return current entry: loss
double getLoss(int path);

// @return current entry: underlying
int getUnderlyingID(int path);

}

This is a stochastic iterator, since it is parametrized by a path index, that as three values in
each state (time, loss and underlying). Note that this interface differs slightly from the JavaTM2
Plattform SE v1.4.2 Iterator in the handling access (getters) and incrementation (nextEntry,
hasEntry).

The pricing code of the product then iterates through defaults/losses provided by the default
time iterator and calculates (loss triggered) payments depending on product specific informa-
tion such as subordination or waterfall structures. The modification of defaults of a given
underlying, that we need for the delta calculation, may be integrated directly into the default
time iterator. This lets the methodgetValueForGivenDefaultTimes (see Listing1)
look even leaner: The use of the default time iterator will then look as follows:

for (int iPath=0; iPath<model.getNumberOfPaths(); iPath++) {
for (;defaultTimeIterator.hasEntry(iPath) ; defaultTimeIterator.nextEntry(iPath)) {

// Get default from underlying model
double time = defaultTimeIterator.getTime(iPath);
double loss = defaultTimeIterator.getLoss(iPath);

// ... calculate loss triggered product specific features payments...
}

}

23 In other words we have a family of iterators prametrized by the path index.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

19 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

5.3 Allowing any Product to Become the Underlying of any other: Effi-
cient Implementation of Power CDOs

With the design pattern of a default time iterator, that is provided by the models default time
iterator factory, there is a simple way to provide a highly flexible product implementation
framework where any product may become the underlying of any other product. To accomplish
this only two parts have to be implemented:

1. Any product which potentially may become an underlying provides its own default time
iterator, that is synchronized with the model default time iterator.

2. A CDO requests the losses from its underlyings via the underlyings default time iterator.

To ensure efficiency of this approach one exception is made: The underlying CDSes share one
common default time iterator, namely the models default time iterator.

The two ideas above are realized by a default time iterator interface (abstract class) which
is implemented by any product

private DefaultTimeIterator[] embededProductsDefaultIterator;
private double [] embededProductsNotionals;

and a small modification of the pricing code where the loss aggregation becomes
for (int iPath=0; iPath<model.getNumberOfPaths(); iPath++) {

for (;defaultTimeIterator.hasEntry(iPath) ; defaultTimeIterator.nextEntry(iPath)) {
// Get default from underlying model
double time = defaultTimeIterator.getTime(iPath);
double loss = defaultTimeIterator.getLoss(iPath);

// Add loss of embeded products
for (int embededProductIndex=0; embededProductIndex<embededProductsNotionals.length; embededProductIndex++) {

// Add loss over embeded product
loss += embededProductsNotionals[embededProductIndex] *

embededProductsDefaultIterator[embededProductIndex].getLoss(iPath);

// Advance emeded products iterator
embededProductsDefaultIterator[embededProductIndex].nextEntry(iPath);

}

// ... calculate loss triggered product specific features payments...
}

}

Following this design pattern we create a single product class that may represent a CDO,
CDO2, CDO3, . . . , while simultaneously being lean and elegant. See Listing1 for an example.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

20 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

Listing 1: A generic single tranche CDO with arbitrary underlyings (e.g. CDS, CDO, CDO2,...). For
notional convenience the payout has been slightly simplified.

1 public class SingleTrancheCDO {
2 private double [] tenorStructure;
3 private double notional;
4 private double subordination;
5 private double spread;
6
7 private DefaultTimeIterator[] embededProductsDefaultIterator;
8 private double [] embededProductsNotionals;
9

10 / **
11 * @return Returns the vector of values by modifiyng the models default times of unterlying <code>underlyingID</code>
12 * /
13 double [] getValueForGivenDefaultTimes(ConditionalLossModel model, int underlyingID, double [] defaultTimes)
14 {
15 // Allocate memory for random variables value, notional and subordination
16 double [] valueOnPath = new double [model.getNumberOfPaths()];
17 double [] notionalOnPath = new double [model.getNumberOfPaths()];
18 double [] subordinationOnPath = new double [model.getNumberOfPaths()];
19
20 // Initialize value, notional and subordination
21 Arrays.fill(valueOnPath, 0.0);
22 Arrays.fill(notionalOnPath, notional);
23 Arrays.fill(subordinationOnPath, subordination);
24
25 // Allocate default time iterator
26 DefaultTimeIterator defaultTimeIterator = model.getDefaultTimeIterator();
27
28 // Initialize default times modification
29 defaultTimeIterator.setModifiedDefaultTimes(underlyingID, defaultTimes);
30
31 // Loop over periods
32 for (int iPeriod = 0; iPeriod < tenorStructure.length; iPeriod++) {
33 double periodStart = tenorStructure[iPeriod];
34 double periodEnd = tenorStructure[iPeriod+1];
35
36 double daycountFraction = periodStart-periodEnd;
37
38 // Restrict the iterator to default times t in (periodStart , periodEnd]
39 defaultTimeIterator.setPeriod(periodStart, periodEnd);
40
41 for (int iPath=0; iPath<model.getNumberOfPaths(); iPath++) {
42 for (;defaultTimeIterator.hasEntry(iPath) ; defaultTimeIterator.nextEntry(iPath)) {
43 // Get default from underlying model
44 double time = defaultTimeIterator.getTime(iPath);
45 double loss = defaultTimeIterator.getLoss(iPath);
46
47 // Add loss of embeded products
48 for (int embededProductIndex=0; embededProductIndex<embededProductsNotionals.length; embededProductIndex++) {
49 // Add loss over embeded product
50 loss += embededProductsNotionals[embededProductIndex] *
51 embededProductsDefaultIterator[embededProductIndex].getLoss(iPath);
52
53 // Advance emeded products iterator
54 embededProductsDefaultIterator[embededProductIndex].nextEntry(iPath);
55 }
56
57 // Degrade subordination
58 subordinationOnPath[iPath] -= loss;
59
60 // If subordination has become negative we have a loss withing this CDO
61 double lossOverSubordination = -Math.min(subordinationOnPath[iPath],0.0);
62
63 // Floor subordination at 0.0
64 subordinationOnPath[iPath] = Math.max(subordinationOnPath[iPath],0.0);
65
66 // Cap loss by notional
67 lossOverSubordination = Math.min(lossOverSubordination, notionalOnPath[iPath]);
68
69 // Degrade notional
70 notionalOnPath[iPath] -= lossOverSubordination;
71
72 // Consider protection payment
73 valueOnPath[iPath] += lossOverSubordination * model.getDiscountFactor(time);
74 }
75
76 // Consider protection fee
77 valueOnPath[iPath] -= notionalOnPath[iPath] * spread * daycountFraction * model.getDiscountFactor(periodEnd);
78 }
79 } // for(iPeriod)
80
81 return valueOnPath;
82 }
83 }

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

21 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

6 Numerical Results

In this chapter we provide some numerical results on the methods described above. We demon-
strate that the model has been implemented correctly by comparing Monte Carlo prices and
deltas for simplified single tranche CDOs against the semi-analytical methods in [1]. Ulti-
mately we are interested in the speed of convergence of our direct delta method compared to
other methods that are popular in a Monte Carlo framework. To demonstrate the efficiency the
direct delta method we compare the speed of convergence against a brute force delta calcu-
lation mixed with some variance reduction techniques. To stress that the direct delta method
is generic we use not only a single tranche CDO as a test case, but also one CDO2 with four
underlying single tranche CDOs . As the main results do not depend on the specific market
data setting we use somewhat artificial "market data" for our tests.

6.1 Setup of Test Cases

The discount curve we are using is bootstrapped from the market information that resembles
the EUR market at the beginning of 2005.

PRODUCT MATURITY RATE

Money Market Cash24 1 day 2.03%
Money Market Cash 7 days 2.03%
Money Market Cash 1 month 2.08%
Money Market Cash 2 months 2.09%
Money Market Cash 3 months 2.10%
Money Market Cash 4 months 2.12%
Money Market Cash 5 months 2.13%
Money Market Cash 6 months 2.15%
Annual Swap25 1 year 2.33%
Annual Swap 2 years 2.53%
Annual Swap 3 years 2.72%
Annual Swap 4 years 2.89%
Annual Swap 5 years 3.05%

The underlying Credit Default Swaps for our test case CDOs are simplified. We use a
total of 100 credits, grouped into 5 categories. Credits within each category share the same
parameters and we therefore expect that credits in the same group have identical CDS spread
deltas. The categories differ in assumed recovery rates, in the assumed CDS par yield curve
and their correlation setting. The categories are characterized by the following table

CREDIT GROUP RECOVERY CDS CURVE CORR. GROUP

Group 1 60% CDS Curve low 1
Group 2 20% CDS Curve low 1
Group 3 60% CDS Curve high 1
Group 4 20% CDS Curve high 1
Group 5 20% CDS Curve high 2

where the two distinct CDS curves are given in the following table

24 Usingday count conventionact/360,day roll conventionmodified following.
25 Usingday count convention30/360,day roll conventionmodified following.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

22 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

CDS CURVE 1 YEAR 3 YEARS 5 YEARS

CDS Curve low 10BP 15BP 20BP
CDS Curve high 20BP 60BP 100BP

and the correlation between the underlying credits is determined by their affiliation to a
correlation groupas indicated in the table above. The correlation between the members of a
correlation group as given in the following table.

CORR GROUP1 CORR GROUP2

GROUP1 20% 0%
GROUP2 0% 0%

Note, that a one factor model is sufficient to fit the correlation structure perfectly.
The details of the CDO test products are given in the following table26. The benchmark

CDO use the simplifications and approximations laid out in [1]. With these assumptions27

a semi-analytical pricing is feasible and can use them as benchmarks for our Monte Carlo
implementation if, for consistency reasons, we use the same simplified assumptions. The as-
sociated Monte Carlo prices are found under the label BENCH. MC in the table below. Note
that the difference between Monte Carlo benchmark prices and the semi-analytical prices are
consistent to the reported error of the MC simulation28.

METHOD BRUTE FORCE 3 YEARS 5 YEARS

CDS Curve low 10BP 15BP 20BP
CDS Curve high 20BP 60BP 100BP

Besides these simplified benchmark products we also consider the pricing of unmodified
products29. For all Monte Carlo prices the table also indicates the associated Monte Carlo
errors of the price estimation for a simulation with 100,000 paths. The absolute MC error of
the simulation is well below 1 BP of the notional for all products.

The underlying of the CDO2 are the four STCDOs. For the CDO2 no semi-analytical
benchmark is available, so that the table does not include any benchmark prices.

PARAMETER STCDO 1 STCDO 2 STCDO 3 STCDO 4 CDO2

Notional Group 1 (mEUR) 40 66.667 0 0 —
Notional Group 2 (mEUR) 40 66.667 0 66.667 —
Notional Group 3 (mEUR) 40 66.667 66.667 66.667 —
Notional Group 4 (mEUR) 40 0 66.667 66.667 —
Notional Group 5 (mEUR) 40 0 66.667 0 —

Pool Notional (mEUR) 4,000 4,000 4,000 4,000 4,000
Tranche Notional (mEUR) 100 100 100 100 200
Subordination 7.5% 7.5% 7.5% 7.5% 2.0%
Maturity in years 5 5 5 5 5
Spread 0.75% 0.50% 2.50% 1.50% 1.50%

to be continued

26 Some minor information is neglected here. For example we assume that all CDOs are based on quarterly term
structure, pay a fixed spread based on act/360 day count convention.

27 The main simplification is that only loss distributions on the quarterly tenor structure are considered. Therefore all
losses need to be mapped to to the quarterly tenor structure.

28 Further convergence tests showed that the Monte Carlo error vanishes when the number of paths are increased.
29 As the benchmark products only modify the loss time so that it falls on the quarterly tenor structure, the price

difference between the simplified benchmark product and the corresponding STCDO is in general rather small.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

23 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

DEAL SPECIFICS STCDO 1 STCDO 2 STCDO 3 STCDO 4 CDO2

Benchmark MC (EUR) 923,199 276,307 1,099,955 1,967,318 —
Benchmark SA (EUR) 946,718 280,200 1,205,928 2,042,833 —
MC error (EUR) 32,639 22,137 84,094 58,365 —
Relative MC error (BP) 3.3 BP 2.2 BP 8.4 BP 5.8 BP —

Price (EUR) 872,230 242,409 954,386 1,875,836 87,179
MC error (EUR) 32,754 22,212 77,432 56,892 138,819
Relative MC error (BP) 3.2 BP 2.2 BP 7.7 BP 5.7 BP 6.9 BP

6.2 Credit Spread Sensitivities of a Single Tranche CDO and CDO2

The following graphic displays the delta (1 BP parallel shift of CDS par yield spreads of single
underlying credit) for benchmark STCDO 1 calculated with the semi-analytical benchmark,
the brute force delta and our direct delta method using 10,000 paths for the MC methods. It
shows that the direct delta method is very close to the correct30 semi-analytical deltas. The
difference is within one standard deviation of the delta estimator as indicated in the graph by
error bars. Not surprisingly all deltas of credits within the same group have to be the same. This
is nicely reflected in our delta calculation, as the Monte Carlo error is very small and does not
obscure the structure. With the brute force method on the other hand it is not even feasible to
get an idea of the magnitude of the delta and the structural feature is completely concealed by
the Monte Carlo error. For the brute force delta there are only two possible routes to improve.

Figure 1: Single Tranche CDO: CDS Par Spread Deltas 1BP Shift

Either increase the number of paths or increase the shift applied for the difference quotient in
order to improve stability of the calculation. Figure2 shows the result. Even with 1,000,000
paths the results for 1BP shifts are not as convincing as the deltas calculated with 10,000 paths
and our method. Increasing the shift to 100BP the brute force delta calculation stabilizes, but
due to significant higher order effects the result is now about 20% off the correct figures. This
already indicates that the efficiency gains of our direct delta method are huge. The standard
error for the delta calculated with the brute force method calculated with 1,000,000 simulation

30 If we accept the simplifications necessary for the semi-analytical method it provides the correct results.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

24 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

Figure 2: Benchmark STCDO 1: CDS Par Spread Deltas

paths lies between 100 and 200, while the direct delta MC error is between 25 and 60 with as
little as 10,000 paths. We can therefore expect an efficiency gain by a factor beyond 100. In
the following section we further analyze the convergence issues.

6.3 Convergence Properties of CDS Spread Delta Calculations

In this section we compare the convergence speed of the direct delta method outlined above
against the standard brute force method, where we additionally applied importance sampling
and stratified sampling for both methods. Figure3 indicates the convergence of the different
methods. It shows the Monte Carlo error for the estimation of the CDS delta for STCDO 1
with respect to credit 1 (in group 1). Some improvements can be achieved by the standard
variance reduction techniques, but clearly not to the same scale possible with our direct delta
method. In line with the square root convergence of MC methods we defineefficiency gain
by the squared quotient of the MC error of the standard brute force method over the method
under consideration. For the various calculation methods we found in our tests31 the following
efficiency gains for STCDO 1.

CALCULATION SAMPLING EFFICIENCY GAIN FOR DELTAS PERCREDIT GROUP

METHOD METHOD Group 1 Group 2 Group 3 Group 4 Group 5

CALCULATION SAMPLING EFFICIENCY GAIN FOR DELTAS PERCREDIT GROUP

METHOD METHOD Group 1 Group 2 Group 3 Group 4 Group 5

Brute Force Standard 1.0 1.0 1.0 1.0 1.0
Importance(IS) 2.4 2.3 2.0 2.6 2.2
Stratified(SS) 1.0 1.0 0.9 1.2 1.0
IS + SS 2.5 2.4 1.9 2.6 2.2

Direct Delta Standard 273 484 402 781 1,507
Importance(IS) 969 1,741 1,194 2,405 3,755
Stratified(SS) 416 746 558 1,156 2,131
IS + SS 1,148 2,323 1,403 3,154 4,814

31 Tests for stratified sampling not yet completed.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

25 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

Figure 3: STCDO 1: Estimated MC Error of CDS Par Spread Deltas (Credit 1)

In our test case we achieve efficiency gains over the brute force Monte Carlo method of
around factor 2 using the standard variance reduction techniques importance sampling and
stratified sampling (see also Figure4, 6). Using our direct delta method, however, efficiency
gains are well above a factor of 100 and for some even above 1,000 (see also Figure5, 7).
Combining our method with variance reduction schemes we achieve a efficiency gain by a
factors beyond 1,000. With real/near time calculation of deltas become possible. For exam-
ple the calculation of all 100 CDS deltas for our five test products (totalling 500 sensitivities)
with 10,000 simulation paths takes about 190 seconds on a standard PC (3GHz Single Pen-
tium Processor, 1GB RAM). Thus one delta is calculated in less than half second. For 10,000
simulation paths the relative standard error of the delta estimation is around 2.5%. It is impor-
tant to note that roughly 5,000,000 simulation paths would be necessary in a brute force delta
calculation without any variance reduction in order to achieve about the same accuracy. In our
experience the direct delta method takes roughly the same computational time as a brute force
delta32. Thus for the 5 products one would needs to invest roughly 1 day of computational time
for calculating all CDS deltas with the same kind of accuracy.

As noted above the direct delta method is completely generic and can be used with any
CDO product without any additional implementation. For the CDO2 we find the following
efficiency gains over the standard brute force method.

CALCULATION SAMPLING EFFICIENCY GAIN FOR DELTAS PERCREDIT GROUP

METHOD METHOD Group 1 Group 2 Group 3 Group 4 Group 5

Brute Force Standard 1.0 1.0 1.0 1.0 1.0
Importance(IS) 2.5 1.9 1.8 1.7 2.1
Stratified(SS) 1.0 1.0 1.0 1.1 1.0
IS + SS 2.7 1.9 1.7 1.6 1.8

Direct Delta Standard 479 2,051 4,244 4,807 3,720
Importance(IS) 841 1,312 1,022 1,656 2,922
Stratified(SS) 352 1,312 598 1,137 2,442

to be continued
32 For the brute force delta the product has to be priced twice, while the direct delta is based on a single simulation.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

26 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

CALCULATION SAMPLING EFFICIENCY GAIN FOR DELTAS PERCREDIT GROUP

METHOD METHOD Group 1 Group 2 Group 3 Group 4 Group 5

IS + SS 838 1,726 1,256 2,308 3,721

As these results are pretty similar to those for the STCDO1 we are fairly confident that the
efficiency gains that we found for our method does transfer to other more complex products as
well.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

27 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

Figure 4: STCDO 1: Estimated Efficiency Gains of some standard Variance Reduction Schemes for Delta
Calculation (Credit Group 1)

Figure 5: STCDO 1: Estimated Efficiency Gains of Direct Delta Method (Credit Group 1)

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

28 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

Figure 6: CDO2: Estimated Efficiency Gains of some standard Variance Reduction Schemes for Delta
Calculation (Credit Group 1)

Figure 7: CDO2: Estimated Efficiency Gains of Direct Delta Method (Credit Group 1)

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

29 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

7 Concluding Remarks

In their first days Monte Carlo has been the method of choice for complex basket credit prod-
ucts. So far one of the main shortcomings of that approach has been the slow convergence of
its risk sensitivities. This has lead many to investigate other alternative numerical implemen-
tations. In this paper we have presented a method that allows to calculate deltas for CDOs
very efficiently in a Monte Carlo framework. What’s even more, our method is generic, i.e.
applicable for arbitrary CDO structures without any need for additional research or implemen-
tation efforts, and, as shown explicitly in the code fragments, it leads to a lean implementation.
Both of these features are very important from a practical point of view. Finally we note that
it should be straight forward, possibly a little tedious, to expand the method to second order
sensitivities.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

30 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

List of Symbols

Symbol Meaning

k Number of common factors in the CDO Conditional Loss Model.

m Number of individual names.

N Number of monte carlo sample paths.

si Risk neutral credit default spread curve of the i-th individual name.

s Vector of the risk neutral credit default spread curves.

λi Default intensity function of the i-th individual name,t 7→ λi(t).

λ Vector of default intensities.

τi Default time of the i-th individual name (random variable).

qi(t, λi | x) Conditional distribution function ofτi, conditioned onx and for a given
value of thei-th default intensity. The functionτ 7→ qi(τ, λi | x) is the
inverse ofvi 7→ τi(v, w) for a givenx = Φ−1(w).

N (µ, σ) Normal distribution with meanµ and standard deviationσ.

φ Density of the standard normal distribution:φ(x) = 1√
2π

exp(−x2).

Φ Cumulative distribution function of the standard normal distribution:
Φ(x) =

∫ x

−∞ φ(ξ) dξ.

T Maturity of the product.

xT Vector of common/systematic factors.

ci Vector of factor loadings for crediti.

εi Random variable for the idiosyncratic risk of crediti.

V Value of the CDO product.

Ṽ Monte Carlo approximation of the value of the CDO product.

f(·) Function giving the time-0 value of a discounted cashflow of the CDO.

ri Directional shift of the credit default term structuresi.

e(s, r) Directional shift of the default intensity term structure given a CDS
spread curves and a directional shiftr. Due to the bootstrapping the
shift also depends on the recovery rate of the underlying credit. This
dependency is neglected in the notation.

∇e Directional derivative in directione.
∇eV (λ) := limξ→0

V (λ(s)+ξe)−V (λ(s))
ξ

tν Thet-distribution withν degrees of freedom.

b(z, w) The beta functionb(z, w) =
∫ 1

0
tz−1(1− t)w−1dt.

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

31 Version 0.9.2 (20050531)

http://www.christian-fries.de/finmath/cdogreeks

Fast and Robust Monte Carlo CDO Sensitivities Marius Rott, Christian Fries

References

[1] ANDERSEN, LEIF; SIDENIUS, JAKOB ; BASU, SUSANTA: All your hedges in one
basket. Risk Magazine 11/2003, 67-72 (2003).

[2] BRASCH, HANS-JÜRGEN: A Note on Efficient Pricing and Risk Calculation of Credit
Basket Products. Preprint, 2005.http://defaultrisk.com/pp_crdrv_54.
htm .

[3] BOYLE, PHELIM ; BOADIE, MARK ; GLASSERMAN, PAUL : Monte Carlo methods for
security pricing. Journal of Economic Dynamics and Control, 21, 1267-1321 (1997).

[4] BROADIE, MARK ; GLASSERMAN, PAUL : Estimating Security Price Derivatives us-
ing Simulation.Management Science, 1996, Vol. 42, No. 2, 269-285.

[5] FOURNIÉ, ERIC; LASRY JEAN-M ICHEL; LEBUCHOUX, JÉRÔME; L IONS, PIERRE-
LOUIS; TOUZI, NIZAR: Applications of Malliavin calculus to Monte Carlo methods
in finance. Finance Stochastics. 3, 391-412 (1999). Springer- Verlag 1999.

[6] FRIES, CHRISTIAN P.; KAMPEN, JÖRG: Proxy simulation schemes using likelihood
ratio weighted Monte Carlo for generic robust Monte-Carlo sensitivities and high ac-
curacy drift approximation (with applications to the LIBOR Market Model). 2005.
http://www.christian-fries.de/finmath/proxyscheme

[7] GAMMA , ERICH; HELM , RICHARD; JOHNSON, RALPH E.: Design Patterns.
Addison-Wesley Professional, 1997.ISBN 0-2-016-3361-2.

[8] GLASSERMAN, PAUL : Monte Carlo Methods in Financial Engineering. (Stochastic
Modelling and Applied Probability). Springer, 2003.ISBN 0-387-00451-3.

[9] GLASSERMAN, PAUL ; L I , JINGYI : Importance Sampling for Portfolio Credit Risk.
Working paper, Columbia University (2003).http://www2.gsb.columbia.
edu/faculty/pglasserman/Other/is_credit.pdf .

[10] JOSHI, MARK S.: Applying Importance Sampling to Pricing Single Tranches of
CDOs in a One-Factor Li Model. QUARC, Group Risk Management, Royal Bank
of Scotland. Working paper, 2004.

[11] KLOEDEN, PETER E.; PLATEN , ECKHARD: Numerical Solution of Stochastic Dif-
ferential Equations (Applications of Mathematics. Stochastic Modelling and Applied
Probability Vol. 23). Springer Verlag, 1999.ISBN 3-540-54062-8.

[12] L I ,D.: On Default Correlation: a Copula Approach (Journal of Fixed Income, 9, 43-
45)

c©2005 Christian Fries, Marius Rott
http://www.christian-fries.de/finmath/cdogreeks

32 Version 0.9.2 (20050531)

http://defaultrisk.com/pp_crdrv_54.htm
http://defaultrisk.com/pp_crdrv_54.htm
http://www.christian-fries.de/finmath/proxyscheme
http://www.amazon.de/exec/obidos/ASIN/0201633612/space-21
http://www.amazon.de/exec/obidos/ASIN/0387004513/space-21
http://www2.gsb.columbia.edu/faculty/pglasserman/Other/is_credit.pdf
http://www2.gsb.columbia.edu/faculty/pglasserman/Other/is_credit.pdf
http://www.amazon.de/exec/obidos/ASIN/3540540628/space-21
http://www.christian-fries.de/finmath/cdogreeks

	Introduction
	Layout of the Paper

	CDO Conditional Independent Loss Model
	Coordinate System of the Default State Space

	Product Valuation
	Monte Carlo Valuation
	Some Variance Reduction Techniques
	Importance Sampling
	Stratified Sampling

	CDS Par Spread Sensitivities
	Brute Force Approach
	The Conditional Cumulative Default Distribution
	Likelihood Ratio Method
	Sensitivity Calculation via Conditional Cumulative Default Distribution
	Adding Standard Variance Reduction
	Forward Starting Transactions

	Non-Normal Distributional Assumptions
	The t-Distribution

	Implementation
	Reuse of Pricing Code for Delta Calculation
	Efficient Model Interface: The Default Time Iterator Design Pattern
	Allowing any Product to Become the Underlying of any other: Efficient Implementation of Power CDOs

	Numerical Results
	Setup of Test Cases
	Credit Spread Sensitivities of a Single Tranche CDO and CDO2
	Convergence Properties of CDS Spread Delta Calculations

	Concluding Remarks
	List of Symbols
	References

