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Cross-Currency and Hybrid Markov-Functional Models

1 Introduction

In this paper we consider cross-currency Markov-functional models and their calibration un-
der the spot measure. Hunt, Kennedy and Pelsser [12, 13, 18] introduced a single-currency
Markov-functional interest rate model in the terminal measure and showed how to efficiently
calibrate it to LIBOR or swaprate options. Building upon their work we will present a multi-
factor cross-currency LIBOR model under different measures. We see zero correlated FX spot
and LIBOR rates as a natural starting point. Under this assumption we don’t need a change
of numéraire drift correction. The functionals of the foreign currency rates under the domestic
numéraire then are identical to the functionals of the foreign currency model under its (for-
eign) spot measure. This provides the motivation for first deriving a spot measure version of
single-currency Markov-functional model. We will show that in the spot measure it is possible
to formulate and implement a very efficient calibration procedure comparable to that provided
in [12] for the terminal measure. Combining single-currency Markov-functional interest rate
models with a Markov-functional FX spot model we build two and three-factor cross-currency
models. Relaxing the zero correlation assumption is technically quite simple, but it entails
considerable additional computational costs, mainly for the calibration of the model to FX op-
tions. To circumvent this problem we suggest a more efficient approximate procedure, which
seems to work quite well for low correlations.

Lattice-type models, like trees or Markov-functional models, with numerical integration
as the main computational building block are usually seen numerically too expensive in high
dimensions. However, with recent advances in sparse grid integration methods and sparse grid
PDE methods, see e.g. [3, 10] and references therein, high dimensional integration became
computationally feasible.

The Markov-functional model captures the probability densities inferred from option prices
by assigning values to the realizations of the underlying Markov process. This is similar to
local volatility models [9] and implied trees [8]. The implementation of the Markov-functional
models assign values (e.g. LIBORs) to nodes with given transition probabilities, while trees
usually assign transition probabilities to nodes with given values (e.g. short rate).

The current standard for pricing LIBOR exotics is probably the LIBOR Market Model
(cf. [4, 5, 14, 16, 17, 19, 20, 22]). We see the Markov-functional model as a complement
to LIBOR Market Models. The LIBOR Market Model is Markovian in high-dimensionions,
but non Markovian in low-dimensions and it is therefore usually implemented as Monte Carlo
simulation.1 Despite recent advances2, the determination of robust and fast early exercise
boundaries is still a challenge within high dimensional Monte Carlo models. The backward
algorithm of Markov-functional models offer a robust and fast alternative. In the context of
cross-currency models we successfully take advantage of Markov-functional models for the
pricing and sensitivity calculation of products like Bermudan Callable Power Reverse Duals.

The paper is organized as follows: Section2 reconsiders the single-currency Markov-
functional model. After a review of the LIBOR Markov-functional model under the terminal
measure, c.f. [12], we show how to efficiently calibrate a single-currency Markov-functional
model under the spot measure (Sections2.2). Section2.4 briefly discusses the change of
numéraire in a single-currency Markov-functional model. In Section3 we will then consider
a simplified cross-currency model with deterministic foreign interest rates and stochastic FX
rates. Finally, in Section4 we will discuss the general case of stochastic domestic interest
rates, foreign interest rates and FX rates. We conclude by briefly sketching in Section5 how
to adjust the Markov-functional FX model to equity.

1 Markovian approximation of the LIBOR Market Model exists, see, e.g., [19].
2 See e.g. [1, 6, 7, 15, 19, 21].
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Cross-Currency and Hybrid Markov-Functional Models

2 One-factor single-currency models

We consider a time discretization of the interval[0, T ] into n subintervals given by0 =: T0 <
T1 < . . . < Tn := T . P (Ti; t) denotes the timet value of the zero coupon bond paying
1 at timeTi and defines aFt-measurable random variable over the filtered probability space
(Ω, Q,F , {Ft}). By P (Ti) we denote the corresponding{Ft}-adapted stochastic process,
while P (Ti; t) is theFt-measurable random variable andP (Ti; t, ω) denotes its value at some
pathω ∈ Ω.3

2.1 Markov-functional model under the terminal measure4

Choose the zero coupon bond which pays1 at Tn as the numéraireN(t) := P (Tn; t). As-
suming the validity of thefundamental pricing theorem5 (see e.g. [2, 13, 17]) the value of
replicateable assetsV (t) is given by the expectation6 of theN -relative valueV

N with respect
to the (so called)equivalent martingale measureQN :

V (t1)
N(t1)

= EQN

(
V (t2)
N(t2)

|Ft1

)
. (1)

We make the following assumption:

The numéraireN(t) = P (Tn; t)

is a (deterministic) function ofx(t),

wherex is a Markovian process, given by

dx = σ(t)dW underQN , x(0) = x0.

(2)

HereW is aQN -Brownian motion, adapted to the filtration{Ft}. We will denote functional
form of the numéraire, whose existence is postulated in (2), by N again and writeN(Ti, ξ).
We skipQN in the expectation operator as all following expectations are with respect to the
measureQN . Since the distribution of the random variablex(t) with respect to the measure
QN is known, expectations of functionsξ 7→ f(ξ) are given by

E(f(x(Tj))|{x(Ti) = ξ}) =
∫ ∞

−∞
f(η)φ(η − ξ; σ̄)dη,

where φ(·; σ̄) is the probability density of the normal distribution with varianceσ̄2 =∫ Tj

Ti
σ2(τ)dτ .
By (1) and assumption (2) all products considered in this framework are functions ofx.

Non-path dependent products as of timeTi are function ofx(Ti) alone. For example, bond
prices at timet = Ti (i < j) in statex(Ti) = ξ are given by

P (Tj ;Ti, ξ) = N(Ti, ξ) · EQN

(
1

N(Tj , x(Tj))
|{x(Ti) = ξ}

)
.

3 Although we sometimes consider continuous processes, we are only interested in the timeTi realizations and only
the discretized processes really matter here.

4 This section sketches the Markov-functional model under terminal measure, as introduced by Hunt, Kennedy and
Pelsser, [12].

5 For the case of discrete time and finite state space a fundamental pricing theorem holds under the assumption of
no arbitrage. For continuous time, the assumption is slightly more technical, cf. [2].

6 HereEQN
( · |Ft1 ) denotes the conditional expectation with respect to the measureQN , conditioned on the

information available in timet1, with {Ft} being the filtration.
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Cross-Currency and Hybrid Markov-Functional Models

To streamline notation we simply write

EQN

(. . . |(Ti, ξ)) for EQN

(. . . |{ω|x(Ti, ω) = ξ})

(note that{ω|x(Ti, ω) = ξ} ∈ FTi
) and we will use the same symbol for the functional

ξ 7→ P (Tj ;Ti, ξ) and the original random variableω 7→ P (Tj ;Ti, ω) (as we already did),
whereP (Tj ;Ti, ω) = P (Tj ;Ti, x(Ti, ω)). Since we will only consider functionals ofx this
ambiguity will not lead to confusion.

2.1.1 The LIBOR model

The above constitutes amodel framework. It remains to specify the functional forms of the
numéraireN(Ti). One way to do so is to derive the numéraire from LIBOR rates and infer,
i.e. calibrate, the functional forms of the LIBOR rates from market option prices. This gives
the Markov-functional LIBOR model7.

By definition the LIBORLi, seen on its fixing dateTi is given by

1 + Li(Ti)(Ti+1 − Ti) :=
P (Ti;Ti)

P (Ti+1;Ti)
=

1
P (Ti+1;Ti)

. (3)

SinceP (Ti+1;Ti) is a function ofx(Ti), Li(Ti) is also a function ofx(Ti) given by the
functional

1 + Li(Ti, ξ)(Ti+1 − Ti) =
1

N(Ti, ξ)EQN
(

1
N(Ti+1,x) |(Ti, ξ)

) . (4)

Rearranging we have

N(Ti, ξ) =
1

E
(

1
N(Ti+1,·) |(Ti, ξ)

)
· (1 + Li(Ti, ξ)(Ti+1 − Ti))

. (5)

Thus, givenξ 7→ Li(Ti, ξ), this gives a backward induction stepTi+1 → Ti to calculateN(Ti)
from N(Ti+1). The induction start is trivially given byN(TN ) ≡ 1.

The free parameters of the LIBOR model are

• the specification of the underlying processx, i.e. hereσ(t),

• the specification of the LIBOR functionalξ 7→ Li(Ti; ξ), which is by (5) equivalent to
the specification of the numéraire functionalξ 7→ N(Ti; ξ).

Note that we could reformulate assumption (2) as an assumption on the LIBOR directly:

The LIBORL(Tk) = Lk(Tk) = 1−P (Tk+1;Tk)
P (Tk+1;Tk)(Tk+1−Tk)

(seen upon its maturity) is a (deterministic) function ofx(Tk),

wherex is a Markovian process given by

dx = σ(t)dW underQN , x(0) = x0.

(6)

7 As presented in [12] one might also derive the numéraire from (co-terminal) Swap rates, which then defines the
Markov-functional Swap rate model.
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2.1.2 Calibration of the Markov-functional model under terminal measure

The model is calibrated by deriving the functional formsξ 7→ L(Ti, ξ) from market prices in
each backward induction step.

2.1.3 Backward induction step

Assume thatξ 7→ L(Tk, ξ) for k ≥ i have already been calculated. Thus the numéraire
functionalsN(Tk) are known fork ≥ i from (5). Let V market

K,Ti−1
(T0) denote themarket priceof

the digital caplet with fixing dateTi−1, paying

V market
K,Ti−1

(Ti) =

{
1 if L(Ti−1) ≥ K

0 if L(Ti−1) < K
in Ti.

Digital caplet prices can be calculated if caplet market prices for arbitrary strikesK are given
(see Lemma1 in the appendix). Although we calibrate the model to digital caplet prices, the
procedure will automatically calibrate the model to the corresponding caplet market prices for
all strikesK.

Assume that the functionalξ 7→ L(Ti−1, ξ) is monotone inξ, for a fixedx∗ ∈ R the payoff
of a digital caplet with strikeL(Ti−1, x

∗) and payment dateTi is given by

ξ 7→ V model
L(Ti−1,x∗),Ti−1

(Ti, ξ) =

{
1 if ξ ≥ x∗

0 if ξ < x∗
.

Thus themodel priceis8

V model
L(Ti−1,x∗),Ti−1

(T0) =
1

N(0)
· E
(
1[x∗,∞)

N(Ti)
|(T0, x0)

)
.

Note that, since the right hand side is known and does only depend onx∗ and not on
L(Ti−1, x

∗), the above model price can be calculated for any givenx∗ without knowing
L(Ti−1, x

∗) in the current induction step. We will thus writeV model
x∗,Ti−1

:= V model
L(Ti−1,x∗),Ti−1

.
The requirement to have the model calibrated to market prices implies

V model
x∗,Ti−1

(T0) = V market
K,Ti−1

(T0) (7)

for the strikeK = L(Ti−1, x
∗). Inverting for a given statex∗ the market-price formula for the

corresponding strikeK we findL(Ti−1, x
∗) = K.

As a result this method gives functionalsξ 7→ L(Ti−1, ξ), monotone inξ, calibrated to
caplets of all strikes.

2.2 Markov-functional model under the spot measure

In this section we will discuss the Markov-functional model under the spot measure, i.e. we
choose the money market account as numéraire, and present an efficient calibration method for
this model. By money market account numéraire we mean (c.f. [14, 17])

N(Ti) :=
i−1∏
k=0

(1 + L(Tk))(Tk+1 − Tk), (8)

8 Here1[x∗,∞) denotes the indicator function, i.e.1[x∗,∞)(ξ) = 1 for ξ ≥ x∗ and else0.
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Figure 1: Calibration of the LIBOR functional of the Markov-functional model: The green
curve of prices is given by / inferred from the market. For a given statex∗ the valueV (x∗)
of a calibration product (payout in black) with strikeL(x∗) is calculated. This can be done
without knowing the functionalL, knowing only the distribution ofx (red). Looking up the
corresponding strikeK∗ (on the market curve (green)) one obtainsL(x∗).

which is the value of repeated reinvestments of the initial valueN(0) = 1 in the shortest bond
on our time discretization{T0, . . . , TN}. As in Section2 we make the assumption:

The LIBORL(Tk) = Lk(Tk) = 1−P (Tk+1;Tk)
P (Tk+1;Tk)(Tk+1−Tk)

(seen upon its maturity) is a (deterministic) function ofx(Tk),

wherex is a Markovian process given by

dx = σ(t)dW underQN , x(0) = x0.

(6)

Note that this does imply that the numéraireN(Tk) given in (8) is not a function ofx(Tk)
alone. Here the numéraireN(Ti) is path-dependent, i.e. it is given as a function ofx(T0),
x(T1),. . . ,x(Ti−1):

N(Ti;x(T0), x(T1), . . . , x(Ti−1)) :=
i−1∏
k=0

(1 + L(Tk;x(Tk))(Tk+1 − Tk), (9)

andFTi−1-measurable. In contrast to this for the Markov-functional model under termi-
nal measure we had that the numéraireN(Ti) was a function ofx(Ti) alone (i.e. not path-
dependent andFTi

-measurable, notFTi−1-measurable).

2.2.1 Calibration of the Markov-functional model under spot measure

The calibration procedure of the Markov-functional model under the terminal measure was
presented in [12] and Section2.1.2gave a streamlined presentation of the idea. It seems as
if the feasibility of the calibration process is tied to the choice of the terminal measure as
it induced a simplebackward inductionfor the LIBOR functionals. The LIBOR functionals
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were calculated through the pricing of digital caplets which simply involved expectations of
indicator functionals (ie. half integrals over given distributions).

We will show that the calibration procedure of the Markov-functional model under the spot
measure is given by a simpleforward inductionfor the LIBOR functionals. They are calculated
through the pricing of a portfolio of a caplet and digital caplets. This involves only a simple
half integral over the given distribution and a known expectation step.

2.2.2 Forward induction step

We assume that the LIBORsL(Tj) for Tj < Ti and thusN(Ti) have already been calculated
and present the induction stepTi → Ti+1.9 Together withN(0) := 1 this gives the calibration
procedure as aforward-in-timealgorithm. LetVTi

(Tk) denote the timeTk value of a product
with a timeTi+1 valueVTi

(Ti+1;L(Ti)) depending onL(Ti) only (e.g. the value of a caplet
or digital caplet with fixing dateTi and payment dateTi+1). Then the value of this product is

VTi
(0) = N(0)E

(
VTi

(Ti+1;L(Ti))
(1 + L(Ti)(Ti+1 − Ti))N(Ti)

| FT0

)
.

On the right hand side, we take the expectation of a function depending onL(Ti) andN(Ti).
As the NumeraireN(Ti) is known from the previous induction step the functional form of
L(Ti;x(Ti)) is the only unknown in this equation and it may be used to calibrate the functional
form ξ 7→ L(Ti; ξ) to given market prices.

2.2.3 Dealing with the path-dependency of the numéraire

The path-dependency of the numéraire (9) implies that (conditional) expectations have to be
calculated time-step by time-step using

E
(VTi

(Tk)
N(Tk)

| FTi

)
= E

(VTi
(Tk−1)

N(Tk−1)
| FTi

)
where

VTi(Tk−1) =
E
(
VTi

(Tk) | FTk−1

)
1 + L(Tk−1)(Tk − Tk−1)

.

The need for the time step-by-time step calculation of conditional expectations (induced by
the path-dependency of the numéraire) seems to be a major computational bottleneck, when
compared to the Markov-functional model in terminal measure. However, we will discuss
in Section2.3 thatFT0 conditioned expectations may be calculated fast using a single scalar
product with precalculated projection vectors.

2.2.4 Efficient calculation of the LIBOR functional from given market prices

The LIBOR functional are now derived from the model pricing formula of a portfolio of a
caplet and digital caplets. Consider the following payout function

VTi,K(Ti+1, L(Ti)) :=
{

1 + L(Ti)(Ti+1 − Ti) if Li −K > 0
0 else

paid inTi+1. (10)

This is adigital caplet in arrearsor equivalently the portfolio of1 strikeK caplet andK +
1

(Ti+1−Ti)
strikeK digital caplets. Given market prices of caplets, we have market prices for

9 Note thatN(Ti) depends onL(Tj) for Tj < Ti only.
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the digital caplet in arrears for any strikeK (see Lemma3 in the appendix). Its model price is
given by

V model
Ti,K (T0) = E

(VTi,K(Ti+1)
N(Ti+1)

| FT0

)
= E

( VTi,K(Ti+1)
1 + L(Ti, x(Ti))(Ti+1 − Ti) ·N(Ti)

| FT0

)
= E

(
1(L(Ti, x(Ti))−K) · 1

N(Ti)︸ ︷︷ ︸
FTi−1-measurable

| FT0

)

= E
(
E
(
1(L(Ti, x(Ti))−K) | FTi−1

)
· 1

N(Ti)
| FT0

)
,

where1 denotes the indicator function with1(R) = 0 if R ≤ 0 and1(R) = 1 if R > 0 and
ξ 7→ L(Ti, ξ) denotes the functional form of the LIBOR, assumed to be increasing. Ifx∗ is
such that

L(Ti, x
∗) = K (11)

we have

VTi,K(Ti−1) = E (1(L(Ti, x(Ti))−K) | (Ti−1, ξ)) = E (1(x(Ti)− x∗) | (Ti−1, ξ))

=
∫ ∞

x∗
φ(η − ξ;σ(Ti−1, Ti)) dη.

This reduces the model price to an integral over the indicator function(al) and then taking

the expectationE
(

V (Ti−1)
N(Ti−1)

| FT0

)
. The latter is known from the previous calibration steps

from Ti−1 back toT0. It is implemented efficiently as a scalar product with a pre-calculated
projection vector.10

The calculation of the functional formL(Ti; ξ) thus involves the calculation of model
prices as outlined above for suitable discretization pointsx∗ and calculating the corresponding
strikesK by inverting the market-price function. This determinesL(Ti, x

∗) through (11).
The calibration step is as simple as under the terminal measure: Model prices of calibration

products are evaluated by a half-integral together with a known expectation step and matched
with the market-price function. Here, the half integral only represents a slightly different
product.

Often a certain measure is chosen to simplify the pricing of a given product (e.g. the
Black ’76 caplet pricing formula is best derived under the terminal measure associated with
the caplets payment date). Here this technique is reversed by considering a certain product
with a simple (model) pricing formula under a given measure. The suitable product for the
terminal measure is the digital caplet while the digital caplet in arrears seems the best choice
for the spot measure.

2.3 Remark on the implementation

Given some functionalξ 7→ f(ξ) and a lattice time and state discretization

{xTj ,k | k = 1, . . . ,mi} ⊂ x(Tj ,Ω) = R, 0 ≤ j ≤ n,

wherem0 = 1, xT0,1 = x0. The expectation off(x(Ti+1)) conditioned on statex(Ti) = xTi,k

is given by ∫ ∞

−∞
f(ξ) · φ(ξ − xTi,k; σ̄2)dξ, (12)

10 We will discuss this aspect of the implementation in the next section.
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whereφ(·; σ̄) is the density of the normal distribution with varianceσ̄2 =
∫ Ti+1

Ti
σ2(τ)dτ . The

approximation of this integral within the lattice is given by a numerical integration based on
sampled valuesfk := f(xTi,k). We represent this integration by

A
Ti+1
Ti

· (f1, . . . , fmi+1)
T, (13)

whereA
Ti+1
Ti

is a linear operator given by ami ×mi+1-matrix. Defining

A
Ti+1
T0

:= ATi

T0
·ATi+1

Ti
, (14)

the large time expectation step

E(f(x(Ti+1) | {x(T0) = x0})

is represented numerically byATi+1
T0

. The matrix multiplication withATi+1
T0

is fast asATi+1
T0

is
a row vector.

2.3.1 Fast calculation of price functionals

In the model calibration and the application of the model to derivative pricing expectations of
numéraire relative prices have to be calculated. For a given timeTi+1 functionalV we have to
calculate

I
Ti+1
Ti

[V ](xTi,k) :=
∫ ∞

−∞

V (ξ)
N(Ti+1, ξ)

· φ(ξ − xTi,k; σ̄2)dξ. (15)

It is advantageous to viewξ 7→ 1
N(Ti+1,ξ) · φ(ξ − xTi,k; σ̄2) as convolution kernel and directly

prelculate the numerical approximation of the (linear) operatorV 7→ I[V ].
Redefining theATi+1

Ti
in this sense, we are able to numerically calculate large time-step

expectations

E
(V (Ti+1)
N(Ti+1)

| FT0

)
even for the path-dependent numéraire (9) by a single scalar product of the projection vector
A

Ti+1
T0

with the sample vector(V (xTi+1,1), . . . , V (xTi+1,ni+1)). The vectorsATi+1
T0

may be
precalculated iteratively in each forward induction step.

The elements of projection vectorA
Ti+1
T0

are Arrow-Debreu like prices.

2.3.2 Discussion on the implementation of the Markov-functional model under terminal
and spot measure

It appears that the precalculation of the large time expectation step is only necessary to cope
with the path-dependent numéraire in the spot measure Markov-functional model. However,
in our experience the precalculation of projection vectors through the iteration (14) is advanta-
geous even for the terminal measure variant as it will prevent numerically inconsistent ways of
calculating the large-time expectation. Numerical approximation errors will lead to significant
differences between iterated expectation and single, large time-step expectations, thus violat-
ing the tower law11. By enforcing the calculation of large time step expectations by iterated
expectations the tower law will be valid in the model implementation by definition. It might
seem as if the iteration (14) will then lead to a propagation of numerical errors. Indeed the
terminal distributions are much less closer to a normal distribution, but exact sampling of the
terminal distribution is not crucial and the calibration quality of the discrete model will not
suffer.

11 The tower law is the equation of iterated expectation, i.e.E
“
E

`
Z | FTj

´
| FTi

”
= E

`
Z | FTi

´
for Ti < Tj .
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2.4 Change of numéraire in a Markov-Functional Model

Having presented Markov-functional models under different measures it is natural to ask how
the functionals relate, i.e. under which condition a functional calibrated in one measure may
be reused in the other.

Let N , M be two numéraires. Then for any traded assetV we have:

V (Ti)
N(Ti)

= EQN

(
V (Ti+1)
N(Ti+1)

| FTi

)
V (Ti)
M(Ti)

= EQM

(
V (Ti+1)
M(Ti+1)

| FTi

)
= EQM (V (Ti+1)

N(Ti+1)
N(Ti+1)
M(Ti+1)

| FTi

)
.

Thus

EQM (V (Ti+1)
N(Ti+1)

N(Ti+1)
M(Ti+1)

M(Ti)
N(Ti)︸ ︷︷ ︸

=:C(Ti,Ti+1)

| FTi

)
= EQN

(
V (Ti+1)
N(Ti+1)

| FTi

)

i.e.

EQM

(
V (Ti+1)
N(Ti+1)

· C(Ti, Ti+1) | FTi

)
= EQN

(
V (Ti+1)
N(Ti+1)

| FTi

)
. (16)

We want to see this in the light of a Markov-functional model and thus impose that all three
quantitiesV , N andM are functions of a (scalar) time-discrete Markovian stochastic process
x(t). For illustration purposes we additionally impose that the functional ofV underQM is
the same asV underQN and that

x(Ti+1) = x(Ti) + σ(Ti)∆W (Ti, Ti+1) underQN

x(Ti+1) = x(Ti) + µ(Ti, x(Ti))∆Ti + σ(Ti)∆W (Ti, Ti+1) underQM ,

where∆Ti := (Ti+1 − Ti) - it will become clear below, that this assumption cannot hold in
general. Under these assumptions we have from (16) that12

EQN

(
V (Ti+1)
N(Ti+1)

· C(Ti, Ti+1) | x(Ti) + µ(x(Ti))∆Ti

)
= EQN

(
V (Ti+1)
N(Ti+1)

| x(Ti)
)

,

i.e.

EQN

(
V (Ti+1)
N(Ti+1)

· C(Ti, Ti+1) | x(Ti)
)

= EQN

(
V (Ti+1)
N(Ti+1)

| x(Ti) + µ(x(Ti))∆Ti

)
.

(17)
The Equation (17) is valid for all traded assetsV .13 ChoosingV (T2) ≡ 1 (a bond) we see
that Equation (17) determinesµ(x(T1)) from the change of numéraire integration kernelC14.
With µ fixed we see that (17) cannot hold for general functionalsV . This is clear from Gir-
sanov’s Theorem: Over a discrete time step a change of numéraire will introduce a change
in the conditional probability density, which can not be just a shift of the mean as in general∫ t+∆t

t
µ(t)dt is notFt previsible. (Girsanov’s Theorem [2] states that the conditional prob-

ability density changes by an infinitesimal shift of the mean (the drift adjustment) over an
infinitesimaltime-step.

Therefore, in a discrete time model it is usually not possible to perform a change of
numéraire via an adapted change of the drift (if done, it is an approximation).

Thus we have to relax our assumptions to either

12 We assume here that the two measures are identical onFTi
, i.e. [Ti, Ti+1] is the first time interval where the

change of numéraire applies. This is no restriction, for example the argument applies to the first time step[T0, T1].
13 Equation (17) is just a discrete version of Girsanov’s theorem.
14 Note thatC(Ti, Ti+1) isFTi+1 -measurable but notFTi

-measurable.
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• the driftµ is path-dependent, i.e. we consider

dx = µ(t, x)dt + σ(t)dW resulting in

x(Ti) = x(Ti−1) +
∫ Ti

Ti−1

µ(t, x(t))dt + σ(Ti−1)∆W (Ti−1, Ti) underQM , or

• the functionalV is different underQN andQM .

The first will work, because it is just the proposition of Girsanov’s Theorem.
As we do not want such a path-dependent drift in the driving process, we choose the second

approach. Then we can fitterminal (!) distributions ofV through a change of the functional
form. Under the changed numéraire one has to recalculate the functional formV M .

Note, that a recalculation of the functional formsis nota change of numéraire in the strict
sense. The functional forms may be used to match the relevant terminal, but not the transition,
distributions underQN andQM . As a result prices of some products, e.g. Bermudans, may
differ. The two models are not ”equivalent”.15

This can already be seen for the Markov-functional model under the terminal measure.
Two such models with different time horizonsTm < Tn are not equivalent over the common
time interval[0, Tm].16

15 This problem exists also in Monte Carlo simulations. For example, the Euler discretization of the LIBOR Market
Model’s SDEdLi(t) = µi(t)Li(t)dt + σi(t)Li(t)dW (t) exhibits different discretization errors for different
measures. For the Monte Carlo simulation this problem may be solved by arbitrage-free discretization techniques
[11] or by reducing the size of the discrete time step∆t.

16 It is a charming aspect of the spot measure Markov-functional model that it does not exhibit this dependence on
the time horizon (since there is no time horizon at all).
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3 The two-factor cross-currency model (stochastic FX rates)

Consider

dx = σx(t)dW1

dy = µ(t, x, y)dt + σy(t)dW2

x(0) = x0

y(0) = y0

(18)

with independent increments17, i.e. < dW1,dW2 >= 0. Note, that we allow for a state-
dependent drift in they process. Furthermore, let the domestic LIBOR rateL(Ti) at its fixing
dateTi be a function ofx(Ti) within a (calibrated) one dimensional Markov-functional model
with numéraireN(Ti).

3.1 Discrete approximations of the driving processes

Since we are only interested in functionals of(x, y) at theTi’s, we consider a discretization of
(18). Using a Euler discretization gives

∆x(Ti−1) = σx,i−1

√
∆Ti−1∆W1

∆y(Ti−1) = µ(Ti−1, x(Ti−1), y(Ti−1))∆Ti−1 + σy,i−1

√
∆Ti−1∆W2

(19)

with ∆Ti−1 = (Ti − Ti−1) and

(
∆W1

∆W2

)
∼ N

((
0
0

)
,

(
1 0
0 1

))
,

σx,i−1 :=
√

1
∆Ti−1

∫ Ti

Ti−1
σ2

x(t)dt,

σy,i−1 :=
√

1
∆Ti−1

∫ Ti

Ti−1
σ2

y(t)dt,

where in (19). From now onx(Ti), y(Ti) denote the Euler scheme approximations ofx0 +∫ Ti

0
dx, y0 +

∫ Ti

0
dy, given by

x(T0) = x0

y(T0) = y0

x(Ti) = x(Ti−1) + ∆x(Ti−1)
y(Ti) = y(Ti−1) + ∆y(Ti−1).

and we will consider functionals of the time-discrete processes (19) and not functionals of the
time-continuous processes (18).

In the one dimensional case, there was actually no difference between the approximation
x(Ti) given through the Euler scheme and the random variablex0 +

∫ Ti

0
dx(t) since - trivially

- the approximation was exact due to the absence of a (nonlinear) drift. For they process,
however, we allow time and state-dependent drifts and there is a potential approximation error
in the Euler scheme. This will make it important to consider functionals of the Euler scheme
approximationsx(Ti) andy(Ti) and not of their continuous processesx0+

∫ Ti

0
dx, y0+

∫ Ti

0
dy.

3.1.1 A note on the importance of ’early’ discretization

In the Section3.2we will derive the drift of thediscrete version of the underlying process, i.e.
µ in (19) (the Euler-Scheme) from no-arbitrage considerations. This will make thediscrete
modelanarbitrage free model.

Another possible approach would be to derive the drift of the time-continuous process from
no-arbitrage considerations and then use a discretization scheme with an approximation of the
time-continuous drift. This, however, only guarantees that the discretized model satisfies the
no-arbitrage condition up to a discretization error.

17 This requirement may be relaxed later.

c©2004 Christian Fries
http://www.christian-fries.de/finmath/markovfunctional

12 Version 1.5.1. (20040504)
First version: December 2002

http://www.christian-fries.de/finmath/markovfunctional


Cross-Currency and Hybrid Markov-Functional Models

Note on the notation

In order to calculate conditional expectations of functionals ofx andy it is sufficient to know
the distribution ofx andy. The distribution ofx(Ti), y(Ti) is known from (19). For the cal-
culation of the expectation over one time stepTi+1 → Ti of a functionalG of some random
variableU = U(Ti) + ∆U(Ti) conditioned on stateU(Ti) = ξ, we need to know the distribu-
tion of ∆U(Ti)(ξ) only. To stress that the conditional expectation ofG, conditioned on state
(Ti, ξ) depends only on the increment∆U(Ti) we will write

E∆U(Ti) (G|(Ti, ξ)) :=
∫ ∞

−∞
G(η) · φ∆U(Ti)(η|ξ)dη,

whereφ∆U(Ti)(·|ξ) is the conditional probability density18 of the random variable∆U(Ti)
under the conditionU(Ti) = ξ.

3.2 The functional form and the derivation of the drift

Let P̃ (Ti+1;Ti) denote the foreign bond guaranteeing the payment of 1 unit of foreign currency
in Ti+1 observed inTi. From the fundamental pricing formula (1) we have that the process

FX · P̃ (Ti+1)
N is aQN -martingale and thus

FX(Ti) ·
P̃ (Ti+1;Ti)

N(Ti)
= EQN

(
FX(Ti+1)
N(Ti+1)

|FTi

)
.

Assuming independent changes in interest rates andFX spot over the time stepTi → Ti+1

(this is the discrete version on the assumption of instantaneously uncorrelated rates) we have

FX(Ti) ·
P̃ (Ti+1;Ti)

N(Ti)
= EQN

(FX(Ti+1)|FTi) · EQN

(
1

N(Ti+1)
|FTi

)
,

i.e.

FX(Ti) ·
P̃ (Ti+1;Ti)
P (Ti+1;Ti)

= EQN

(FX(Ti+1)|FTi
) . (20)

We model the spot FX rate as instantaneously uncorrelated to the interest ratesL and
assume

FX(Tk) is a function ofy(Tk) only. (21)

Rewriting (20) using functional forms, and further assuming that the foreign bond is deter-
ministic, (stochastic foreign interest rates will be considered later) we have (with (19))

FX(Ti, y(Ti)) =
P (Ti+1;Ti, x(Ti))

P̃ (Ti+1;Ti)

·E∆y(Ti) (FX(Ti+1, y(Ti+1))|(Ti, x(Ti), y(Ti))) .

(22)

The no-arbitrage condition (20) – and (22) – gives a relation between the functional form
η 7→ FX(Ti, η) and the specification of the transition probability∆y(Ti), i.e. the driftµ and
σy.

Thus, the free parameters of theFX model are

• the specification of the underlying process, hereσy,

• the specification of the FX functionalFX(Ti; y).

and setting the drift according to (22) will ensure that the model is arbitrage free.
18 The conditional probability densities, which form the basis of the model, are normal densities.
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3.2.1 A note on the functional form

In the single-currency Markov-functional model we could arbitrarily choose an underlying
process without imposing any restriction on the functional form of the LIBOR. The model
would always remain arbitrage free and we naturally opted for a zero-drift process. In the
cross-currency model the freedom to choose ay drift is gone, as for a given FX functional we
now need a corresponding drift for the model to remain arbitrage free. If we would a priory
insist on a specific drift, e.g. a zero drift, specifying the functional form ofFX(TN ) would
automatically determine all other functional formsFX(Ti) by (22).

The reason for the ”freedom” to choose the drift for the processx lies in the ability to (still)
choose the numéraire functional. Because of

P (Ti+1;Ti, x(Ti)) = N(Ti, x(Ti)) · E∆x(Ti)

(
1

N(Ti+1, x(Ti+1))
|(Ti, x(Ti))

)
Ti 7→ P (Ti+1;Ti, x(Ti)) is a QN -martingale for any functional formξ 7→ N(Ti, ξ). Con-
versely, for any functional formξ 7→ P (Ti+1;Ti, ξ) we may choose the numéraireξ 7→
N(Ti, ξ) such thatTi 7→ P (Ti+1;Ti, x(Ti)) is aQN -martingale. This freedom is gone once
the numéraire has been chosen.

3.3 Examples for analytical drift calculation for special functional forms

In this section we will derive analytic formulas for the drift for some specific (analytical)
functionals forFX(Ti).

3.3.1 Linear functional form

ChooseFX(Ti, y) = y andσy(Ti, y) = σy,i · y for all timesTi, whereσy,i denotes the
constantinstantaneous volatility. For this functional formy is not just some driving process of
FX, it is the FX and due to the choice ofσy(Ti, y) it is modelled as an Euler approximation of
a log-normal process. In this case (22) results in

µ(Ti, ξ, η)∆Ti = η ·

(
P̃ (Ti+1;Ti)

P (Ti, Ti+1, ξ)
− 1

)
= FX(Ti, η) ·

(
P̃ (Ti+1;Ti)

P (Ti, Ti+1, ξ)
− 1

)
.

This is the Euler scheme of a log-normal process which converges to a log-normal process for
∆T → 0. A similar log-normal process is given by discretizing the log of the process through
an Euler scheme and applying the exponential. This is our next example.

3.3.2 Exponential functional form

Fixing the functional form toFX(Ti, y) = exp(ay) (a > 0) and the diffusion toσ(Ti, y) =
σi = const. for all i results in a simple (instantaneously) log-normal model. By

E∆y(Ti)(FX(Ti+1, y(Ti+1))|(Ti, ξ, η)

= E∆y(Ti)(exp(ay(Ti+1))|(Ti, ξ, η))

= exp
(

a(η + µi(ξ, η)∆Ti) +
a2

2
· σ2

y,i∆Ti

)
= FX(Ti, η) · exp

(
aµi(ξ, η)∆Ti +

a2

2
· σ2

y,i∆Ti

)
(see Lemma2 in the appendix) and by (22) we get

P̃ (Ti+1;Ti)
P (Ti, Ti+1, ξ)

= exp
(

aµi(ξ, η)∆Ti +
a2

2
· σ2

y,i∆Ti

)
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and thus

µi(ξ, η)∆Ti =
1
a

log

(
P̃ (Ti+1;Ti)

P (Ti, Ti+1, ξ)

)
− a

2
σ2

y,i∆Ti. (23)

For this model the free parametersσy,i’s anda already provide enough freedom to replicate
ATM FX option prices, but not enough flexibility to replicate the FX smile.
Note, that in contrast to the log-normal model in the previous section the driftµi does not
depend onη here.

3.3.3 Other functional forms

It is possible to use other functional forms for the FX. This freedom allows to generate FX
skews and smiles. For some parametrized functional forms it is possible to calculate expecta-
tions analytically deriving analytical formulas for the drift19. Of course it is also possible to
solve for the drift numerically using a fast one dimensional root finder, but this will somewhat
slow down the calibration process.

3.4 Calibration to FX option prices

In this section we will describe the forward in time induction step to calibrate the model to FX
option prices. Two different routes are possible:

1. Fix a reasonable functional form, e.g. as in Section3.3.2and calibrate to ATM FX op-
tions by choosing theσy,i.

2. Freely choose the functional form for each time step, e.g. a parametrized functional; this
allows for a full FX option smile calibration.

In this section we will consider the steps necessary for both alternatives.
Model price of an FX option with maturityTi and strikeK are given by

V Ti,K
FXOption(T0) = N(0)E∆x

Ti
T0

,∆y
Ti
T0

(
[FX(Ti, y(Ti))−K]+

N(Ti, x(Ti))
|(T0, x0, y0)

)
Assuming thatFX(Ti−1) andσ(Tj , y) for Tj < Ti−1 are known from previous calibration

steps, the forward in time inductionTi−1 → Ti is completed by calibratingσ(Ti−1) and/or
FX(Ti). The objective to fit FX option model prices to given market prices is either achieved
by using some minimization / root finding algorithm or by methods similar to those presented
for the single-currency model. Since we have already fixedσ(Tj , y) for Tj < Ti−1 we know
the (backward) transition probabilities fromTi−1 toT0. Using the tower law for the conditional
expectation operator, we have

V Ti,K
FXOption(T0) = N(0)E

(
[FX(Ti, y(Ti))−K]+

N(Ti, x(Ti))
|(T0, x0, y0)

)
= N(0)E

(
V̂ Ti,K

FXOption(Ti−1, x(Ti−1), y(Ti−1))|(T0, x0, y0)
)

where

V̂ Ti,K
FXOption(Ti−1, ξ, η) := E

(
[FX(Ti, y(Ti))−K]+

N(Ti, x(Ti))
|(Ti−1, ξ, η)

)
. (24)

19 As a hint we refer to the parametrized functional forms for the single-currency Markov-functional model proposed
Pelsser, see [18].
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The calculation of the expectation

E
(
V̂ Ti,K

FXOption(Ti−1, x(Ti−1), y(Ti−1))|(T0, x0, y0)
)

entails a single convolution with known two-dimensional transition probabilitiesT0 7→ Ti−1.
Since we only condition to a single point(T0, x0, y0) the computational cost is bearable in
general and quite low within a lattice implementation using precalculated projection vectors as
discussed in Section2.3.

Apart from this large time expectation step we have to calculate in each optimization step
V̂ Ti,K

FXOption(Ti−1, ξ, η) for all sample pointsξ, η. An optimization step consists of

1. adjusting the functional form ofFX(Ti) and/orσ(Ti−1),

2. solving for the drift using the drift condition (22),

3. calculating model prices as described above.

Assuming zero instantaneous correlation< ∆W1,∆W2 >= 0 the two-dimensional expec-
tation (24) can be simplified to allow for a much faster calibration. The transition probability
Ti−1 7→ Ti given by the Euler approximation then is

∆x(Ti−1) ∼ N (0, σ2
x,i−1∆Ti−1) (25)

∆y(Ti−1) ∼ N (µi−1(y(Ti−1))∆Ti−1, σ
2
y,i−1∆Ti−1). (26)

For the case of the exponential functional form of Section3.3.2µ is given by an analytical
formula

µi−1(ξ)∆Ti−1 =
1
a

log
(

P (Ti−1, Ti, ξ)
P̃ (Ti−1, Ti)

)
− a

2
σ2

y,i−1∆Ti−1,

while in other cases one may be forced to solve forµ numerically using equation (22). Thus

V̂ Ti,K
FXOption(Ti−1, ξ, η)

= E∆x,∆y

(
[FX(Ti, y(Ti))−K]+

N(Ti, x(Ti))
|(Ti−1, ξ, η)

)
= E∆y

(
[FX(Ti, y(Ti))−K]+|(Ti−1, ξ, η)

)
· E∆x

(
1

N(Ti, x(Ti))
|(Ti−1, ξ)

)
= Eσy,i−1

√
∆Ti−1∆W2

(
[FX(Ti, y(Ti))−K]+|(Ti−1, η + µi−1(ξ)∆Ti−1)

)
· Eσx,i−1

√
∆Ti−1∆W1

(
1

N(Ti, x(Ti))
|(Ti−1, ξ)

)
,

(27)

where the latter involves two, only one dimensional, expectations providing a major improve-
ment in terms of calculation complexity. Note also that the one dimensional expectation

Eσx,i−1
√

∆Ti−1∆W1 is independent ofσy,i−1 and η and it can therefore be calculated out-
side the optimization forσy,i−1 and/or the optimization/calibration of the functional form
η 7→ FX(Ti, η).
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4 The three-factor cross-currency model

We consider a Markov process under a measureQN given by

dx = σx(t)dW1

dy = µ(t, x, y, z)dt + σy(t)dW2

dz = σz(t)dW3

(28)

and as before we choose Euler approximations of the the processesx, y, z, given as

∆x(Ti−1) = σx,i−1∆W1

∆y(Ti−1) = µ(Ti−1, x(Ti−1), y(Ti−1), z(Ti−1))(Ti − Ti−1) + σy,i−1∆W2

∆z(Ti−1) = σz,i−1∆W3

(29)

and consider functionals of the Euler discretisation (which are denoted byx, y, z from now
on).

Let L denote the domestic LIBOR depending onx only, as given by assumption (6) and
FX the FX rate depending ony only, as given by assumption (21). Let N(Ti) denote the
numéraire of the single currency domestic model, which should also serve as numéraire for the
three-factor model. We make the following assumption on the foreign interest rates functional

The foreign LIBORL̃(Ti) := L̃(Ti, Ti+1;Ti) := 1−P̃ (Tk+1;Tk)

P̃ (Tk+1;Tk)(Tk+1−Tk)

(evaluated at its maturityTi) is a (deterministic) function ofz(Ti),

wherez is a Markovian process, given by

dz = σz(t)dW3 underQN , z(0) = z0.

(30)

As a start for our analysis we assume that interest rates and FX rates are instantaneously
independent in the following sense that their conditional transition probabilities are indepen-
dent over the smallest discrete time stepTi−1, Ti. In other words, we assume that∆Wi’s are
independent. This assumption may be relaxed.

Consider a foreign currency productṼ depending at timeTi on the foreign LIBORL̃(Ti)
payingṼ (L̃(Ti)) · FX(Ti+1) atTi+1 to a domestic investor (e.g. a foreign caplet or a foreign
digital caplet). This is a traded asset for the domestic investor and the price of this product is
given by

Ṽ (T0) ·
FX(T0)
N(T0)

= E

(
Ṽ (L̃(Ti)) · FX(Ti+1)

N(Ti+1)
|FT0

)

= E
(

Ṽ (L̃(Ti)) · E
(

FX(Ti+1)
N(Ti+1)

|FTi

)
|FT0

)
.

We haveE
(

FX(Ti+1)
N(Ti+1)

|FTi

)
= P̃ (Ti+1;Ti)

N(Ti)
FX(Ti) and thus

Ṽ (T0) ·
FX(T0)
N(T0)

= E

(
Ṽ (L̃(Ti))

1 + L̃(Ti)(Ti+1 − Ti)
· FX(Ti)

N(Ti)
|FT0

)
.

Since the conditional transition probabilities fromTi+1 to Ti of z andx, y are independent we
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have

= E

(
E

(
Ṽ (L̃(Ti))

1 + L̃(Ti)(Ti+1 − Ti)
|FTi−1

)
· E
(

FX(Ti)
N(Ti)

|FTi−1

)
|FT0

)

= E

(
E

(
Ṽ (L̃(Ti))

1 + L̃(Ti)(Ti+1 − Ti)
|FTi−1

)
· FX(Ti−1)
(1 + L̃(Ti−1)(Ti − Ti−1)) ·N(Ti−1)

|FT0

)

= E

(
E

(
Ṽ (L̃(Ti))

1 + L̃(Ti)(Ti+1 − Ti) · (1 + L̃(Ti−1)(Ti − Ti−1))
|FTi−1

)
· FX(Ti−1)

N(Ti−1)
|FT0

)

and by induction we have

= E

(
Ṽ (L̃(Ti))∏i

k=0(1 + L̃(Tk)(Tk+1 − Tk))
|FT0

)
· FX(T0)

N(T0)
.

This shows that in our time-discrete model, under the assumption of independent increments
for the processesx, y andz, the pricing in the foreign currency behaves as if one considers∏i

k=0(1 + L̃(Tk)(Tk+1 − Tk)) as numéraire, i.e. as if the foreign currency functionals would
be calibrated to theforeigncurrencies spot measure.

Thus the consideration of Section2.4apply and the foreign currency interest rate Makrov
functionals may be calibrated as presented there. In addition we may draw the following
conclusions:

• For model consistency it is preferable to chose the spot measure for the domestic
Markov-functional model.

• For efficiency, it is preferable to calibrate the single-currency model(s) in spot measure,
because then, the functionals may be used without any change in the three-factor model
with instantaneously uncorrelated driving processes.

It is now straight forward to calibrate FX Options, which is done exactly as presented in Sec-
tion 3.4.

The case of non-zero correlation

We have restricted the presentation to the case of zero instantaneous correlation of the driving
processes. It is straight forward to derive and implement the model in the case of non-zero
correlations. While zero correlation simplified the calibration of the models (see (22), (27)), the
expectation operator will not decouple in the case of non-zero correlation and the calculation
cost are significantly increased. In addition one has to consider a change of numéraire drift for
the foreign currency’s driving processz. Considering only low correlations one may retain the
ability of fast calibration by assuming zero correlation over the calibration time step[Ti−1, Ti]
while using the correlated transition probabilities for the expectation over the time interval
[0, Ti−1] (we refer here to the notation in Section3.4).
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5 Other hybrid Markov-functional models

In the same way as we introduced a two factor Markov-functional model to model the FX along
a single-factor Markov-functional model (see Section3) we may model an equity Markov-
functional model.

Given the driving processes

dx = σx(t)dW1

dy = µ(t, x, y)dt + σy(t)dW2

x(0) = x0

y(0) = y0

(31)

let L(Ti) denote the LIBOR rate seen upon its fixing dateTi given as a functional of a (cali-
brated) one dimensional Markov-functional model, i.e. depending onx(Ti) only and letN(Ti)
denote the numéraire of this Markov-functional model.

Let S denote some traded asset (equity) for which we assume that

S(Tk) is a function ofy(Tk) only. (32)

Assuming that the discrete driving process have independent increments over a time step
[Ti, Ti+1] (see Section3) we get (corresponding to (22))

S(Ti, y(Ti)) = P (Ti+1;Ti, x(Ti))

·E∆y(Ti) (S(Ti+1, y(Ti+1))|(Ti, x(Ti), y(Ti))) .
(33)

from which we may solve for the drift. So all aspects are as discussed in Section3 (setting
FX = S andP̃ ≡ 1).
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A Auxiliary calculations

For convenience we provide here some of the (well known) results used during our discussion.

Lemma 1 (Call-spread approximation of a digital caplet): Let V Ti

caplet(K) denote the
price of a caplet with strikeK (and maturityTi) given in some (arbitrary) arbitrage free pricing
model. Assume that a differentiable market-price curveK 7→ V Ti

caplet(K) is given. Then the

prices of digital capletsV Ti

digital(K) under the same model are given by

V Ti

digital(K) = − 1
Ti+1 − Ti

∂

∂K
V Ti

caplet(K).

The approximation of the digital caplet prices by finite differences

Ṽdigital(K; 0) = −Vcaplet(K + ε; 0)− Vcaplet(K − ε; 0)
2ε(Ti+1 − Ti)

is calledcall-spreadapproximation.

Lemma 2 (Expectation of exp(a · X), X normally distributed): Let φ(ξ;µ, σ) =
1√
2πσ

· e−
(ξ−µ)2

2σ2 denote density of the normal distribution andΦ(x) :=
∫ x

−∞ φ(ξ; 0, 1)dξ

the distribution function of the standard normal distribution. Then∫ h2

h1

ea·x · φ(x; y, σ) dx =
[
Φ(

h2 − (y + aσ2)
σ

)− Φ(
h1 − (y + aσ2)

σ
)
]

eay+ a2σ2
2 ,

and thus we have for the expectationE(exp(a · X)) for a random variableX with density
φ(·; y, σ): ∫ ∞

−∞
ea·x · φ(x; y, σ) dx = eay+ a2σ2

2 .

Lemma 3 (Price of a digital caplet in arrears, given implied Black volatility): Let
σ(Ti,K) denote the implied Black volatility of a strikeK caplet with fixing dateTi and pay-
ment dateTi+1, i.e. the price of such a caplet is given by

V Caplet
Ti,K

(0) = P (Ti+1) · (Ti+1 − Ti) ·
(
Li(0)Φ(d+)−KΦ(d−)

)
, (34)

whereΦ(x) := 1√
2π

∫ x

−∞ exp(−y2

2 )dy andd± = ln(
Li(0)

K )± 1
2 σ2(Ti,K)Tn

σ(Ti,K)
√

Ti
.

Given a digital caplet in arrears20 paying inTi

V Dig.Arrears
Ti,K

(Ti) =

{
1 if Li(Ti) > K

0 else.

the value is given by

V Dig.Arrears
Ti,K

(0) =P (Ti+1) · (Ti+1 − Ti) · Li(0)Φ(d+) + P (Ti+1) · Φ(d−)

+ (1 + (Ti+1 − Ti)K)P (Ti+1)Li(0)(Ti+1 − Ti)
√

TiΦ′(d+)
∂σ(Ti,K)

∂K

20 The wordarrears here relates to the fixing, which is behind the period if compared to a digital with fixing date
Ti−1 and payment dateTi.
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Proof: The payout of the digital in arrears is equivalent in value to a payout of

V Dig.Arrears
Ti,K

(Ti+1) =

{
1 + Li(Ti) · (Ti+1 − Ti) if Li(Ti) > K

0 else

made inTi+1, which is equivalent to the payout of(1 + (Ti+1 − Ti)K) times a digital caplet
and1 caplet (both with strikeK). Since the value of a digital caplet is given by21

V Digital
Ti,K

(0) = P (Ti+1)
(
Φ(d−) + Li(0)(Ti+1 − Ti)

√
TiΦ′(d+)

∂σ(Ti,K)
∂K

)
(35)

we have

V Dig.Arrears
Ti,K

(0)

= (1 + (Ti+1 − Ti)K)P (Ti+1)
(
Φ(d−) + Li(0)(Ti+1 − Ti)

√
TiΦ′(d+)

∂σ(Ti,K)
∂K

)
+ P (Ti+1) · (Ti+1 − Ti) ·

(
Li(0)Φ(d+)−KΦ(d−)

)
= P (Ti+1) · (Ti+1 − Ti) · Li(0)Φ(d+) + P (Ti+1) · Φ(d−)

+ (1 + (Ti+1 − Ti)K)P (Ti+1)Li(0)(Ti+1 − Ti)
√

TiΦ′(d+)
∂σ(Ti,K)

∂K
.

21 Equation (35) follows from differentiating (34) with respect toK. The first term relates to theK derivative, while

the second term relates to the Vega followed by the∂σ(Ti,K)
∂K

.
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