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Cross-Currency and Hybrid Markov-Functional Models

1 Introduction

In this paper we consider cross-currency Markov-functional models and their calibration un-
der the spot measure. Hunt, Kennedy and Pelsszrl[3, 18] introduced a single-currency
Markov-functional interest rate model in the terminal measure and showed how to efficiently
calibrate it to LIBOR or swaprate options. Building upon their work we will present a multi-
factor cross-currency LIBOR model under different measures. We see zero correlated FX spot
and LIBOR rates as a natural starting point. Under this assumption we don’t need a change
of numéraire drift correction. The functionals of the foreign currency rates under the domestic
numeéraire then are identical to the functionals of the foreign currency model under its (for-
eign) spot measure. This provides the motivation for first deriving a spot measure version of
single-currency Markov-functional model. We will show that in the spot measure it is possible
to formulate and implement a very efficient calibration procedure comparable to that provided
in [12] for the terminal measure. Combining single-currency Markov-functional interest rate
models with a Markov-functional FX spot model we build two and three-factor cross-currency
models. Relaxing the zero correlation assumption is technically quite simple, but it entails
considerable additional computational costs, mainly for the calibration of the model to FX op-
tions. To circumvent this problem we suggest a more efficient approximate procedure, which
seems to work quite well for low correlations.

Latticetype models, like trees or Markov-functional models, with numerical integration
as the main computational building block are usually seen numerically too expensive in high
dimensions. However, with recent advances in sparse grid integration methods and sparse grid
PDE methods, see e.g3,[10] and references therein, high dimensional integration became
computationally feasible.

The Markov-functional model captures the probability densities inferred from option prices
by assigning values to the realizations of the underlying Markov process. This is similar to
local volatility models 9] and implied trees§]. The implementation of the Markov-functional
models assign values (e.g. LIBORS) to nodes with given transition probabilities, while trees
usually assign transition probabilities to nodes with given values (e.g. short rate).

The current standard for pricing LIBOR exotics is probably the LIBOR Market Model
(cf. [4,5, 14, 16, 17, 19, 20, 22]). We see the Markov-functional model as a complement
to LIBOR Market Models. The LIBOR Market Model is Markovian in high-dimensionions,
but non Markovian in low-dimensions and it is therefore usually implemented as Monte Carlo
simulation! Despite recent advanceshe determination of robust and fast early exercise
boundaries is still a challenge within high dimensional Monte Carlo models. The backward
algorithm of Markov-functional models offer a robust and fast alternative. In the context of
cross-currency models we successfully take advantage of Markov-functional models for the
pricing and sensitivity calculation of products like Bermudan Callable Power Reverse Duals.

The paper is organized as follows: Sectidmeconsiders the single-currency Markov-
functional model. After a review of the LIBOR Markov-functional model under the terminal
measure, c.f.12], we show how to efficiently calibrate a single-currency Markov-functional
model under the spot measure (Secti@id. Section2.4 briefly discusses the change of
numéraire in a single-currency Markov-functional model. In Sec8eove will then consider
a simplified cross-currency model with deterministic foreign interest rates and stochastic FX
rates. Finally, in Sectiod we will discuss the general case of stochastic domestic interest
rates, foreign interest rates and FX rates. We conclude by briefly sketching in Sebion
to adjust the Markov-functional FX model to equity.

1 Markovian approximation of the LIBOR Market Model exists, see, e1d], [
2geee.q.1,6, 7 15,19 21].
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2 One-factor single-currency models

We consider a time discretization of the inter{@&|T] into n subintervals given by =: T, <

Ty < ...< T, :=T. P(T;;t) denotes the time value of the zero coupon bond paying

1 at timeT; and defines &;-measurable random variable over the filtered probability space
(Q,Q,F,{F:}). By P(T;) we denote the correspondifd- }-adapted stochastic process,
while P(T;;t) is the F;-measurable random variable aRdT;; ¢, w) denotes its value at some
pathw € Q.3

2.1 Markov-functional model under the terminal measurée

Choose the zero coupon bond which payat 7,, as the numérair&V (t) := P(T,;t). As-
suming the validity of thundamental pricing theoretn(see e.g.Z, 13, 17]) the value of
replicateable asseis(t) is given by the expectatiérof the N-relative value% with respect
to the (so calledquivalent martingale measu@’ :

Vity) N [ V(ts)

We make the following assumption:

The numéraireV (t) = P(T,;t)
is a (deterministic) function of (), @

wherez is a Markovian process, given by
dr = o(t)dW underQ”, z(0) = .

HereW is aQ™-Brownian motion, adapted to the filtratidd; }. We will denote functional
form of the numéraire, whose existence is postulate@)nkly N again and writeN (7T}, ).

We skipQ?¥ in the expectation operator as all following expectations are with respect to the
measureQ”. Since the distribution of the random variabié) with respect to the measure
QY is known, expectations of functiogs— f(¢) are given by

BUGET)IT) =) = [ fon - o)

where ¢(-;7) is the probability density of the normal distribution with variangé =
fTT] o?(r)dr.

By (1) and assumption?] all products considered in this framework are functiong: of
Non-path dependent products as of tiffieare function ofz(7;) alone. For example, bond
prices attime = T (i < j) in statex(T;) = £ are given by

P T8 = N1, B (s o) =9 ).

J

3 Although we sometimes consider continuous processes, we are only interested in therelizations and only
the discretized processes really matter here.

4 This section sketches the Markov-functional model under terminal measure, as introduced by Hunt, Kennedy and
Pelsser,12].

5 For the case of discrete time and finite state space a fundamental pricing theorem holds under the assumption of
no arbitrage. For continuous time, the assumption is slightly more technic&].cf. [

6 Here EQN( - |F+,) denotes the conditional expectation with respect to the mea&@reconditioned on the
information available in time;, with { F;} being the filtration.
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To streamline notation we simply write

N

EQY (. |(T1,€) for B2 (.. |[{w|z(T;,w) = £})

(note that{w|z(T;,w) = &} € Fr,) and we will use the same symbol for the functional
¢ — P(T;;T;,£) and the original random variable — P(Tj;T;,w) (as we already did),
whereP(T}; T;,w) = P(T}; T;, «(T;,w)). Since we will only consider functionals afthis
ambiguity will not lead to confusion.

2.1.1 The LIBOR model

The above constitutesrmodel framework It remains to specify the functional forms of the
numéraireN (T;). One way to do so is to derive the numéraire from LIBOR rates and infer,
i.e. calibrate, the functional forms of the LIBOR rates from market option prices. This gives
the Markov-functional LIBOR modél

By definition the LIBORL;, seen on its fixing dat; is given by

_ PTsT) 1
L L@ Tin = 1) 2= Bop oy = Pl 1)’ )

Since P(T;1; T;) is a function ofz(T;), L;(T;) is also a function of:(T;) given by the
functional

1

1+ Li(T, §)(Tit1 — T3) = - ; : (4)
N(T;, B (57rk5 (T €))
Rearranging we have
N(T,.6) = : ©)

E (N(%H)KTZ,S)) (1 + Li(T3,6)(Tir — Tl))

Thus, givert — L;(T;, £), this gives a backward induction stép.; — T; to calculateN (7;)
from N(T;41). The induction start is trivially given bV (7) = 1.

The free parameters of the LIBOR model are
o the specification of the underlying process.e. heres (t),

e the specification of the LIBOR functiongl— L;(T;; £), which is by §) equivalent to
the specification of the numéraire functiogal> N(T;;¢).

Note that we could reformulate assumpti@y &s an assumption on the LIBOR directly:

The LIBORL(T},) = Li(Tk) = P(T;’f T(Zf?ﬂfff)w

(seen upon its maturity) is a (deterministic) function¢f} ), ©6)

wherez is a Markovian process given by
dr = o(t)dW underQ”, z(0) = xo.

7 As presented in12] one might also derive the numéraire from (co-terminal) Swap rates, which then defines the
Markov-functional Swap rate model.
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2.1.2 Calibration of the Markov-functional model under terminal measure

The model is calibrated by deriving the functional forgns> L(T;, &) from market prices in
each backward induction step.

2.1.3 Backward induction step

Assume thatt — L(T,€) for k& > i have already been calculated. Thus the numéraire
functionalsN (T},) are known fork > 4 from (5). Let Vﬁ%‘ﬁt (Tb) denote thanarket priceof

the digital caplet with fixing daté&’;_, paying

VRGCUT:) =

1 fL(T_)>K
{ ( 1)_ inT;.

0 ifL(T_y) <K

Digital caplet prices can be calculated if caplet market prices for arbitrary stiika® given
(see Lemmad. in the appendix). Although we calibrate the model to digital caplet prices, the
procedure will automatically calibrate the model to the corresponding caplet market prices for
all strikesK.

Assume that the functiongl— L(T;_1, &) is monotone irg, for a fixedz* € R the payoff
of a digital caplet with strikd.(7;_1, 2*) and payment dat€; is given by

1 if&>a”

model —
§ = VT wn o, (1 6) = { 0 ife<a*

Thus themodel priceis®

1 T
model _ [z*,00)
VL(Ti,l,w*),Ti,l(TO) - N(O) ‘E ( N(T‘l) |(T07'r0)) '

Note that, since the right hand side is known and does only depenc and not on

L(T;_1,x*), the above model price can be calculated for any givérwithout knowing

L(Ti—1,=*) in the current induction step. We will thus writg2 %! .= Vgl . .
The requirement to have the model calibrated to market prices implies

VRS (To) = VR (To) )
for the strikeK = L(T;_1,2*). Inverting for a given state* the market-price formula for the
corresponding strik&” we find L(T;_1,z*) = K.

As a result this method gives functiongls— L(T;_1,&), monotone ing, calibrated to
caplets of all strikes.

2.2 Markov-functional model under the spot measure

In this section we will discuss the Markov-functional model under the spot measure, i.e. we
choose the money market account as numéraire, and present an efficient calibration method for
this model. By money market account numéraire we mean (@f1[7])

i—1

N(T;) == (0 + L(T0)(Thesr — Ti), (8)
k=0

8 Herel[,« - denotes the indicator function, i+ )(§) = 1for{ > z* and elsé.
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Figure 1: Calibration of the LIBOR functional of the Markov-functional model: The green
curve of prices is given by / inferred from the market. For a given statthe valueV (z*)

of a calibration product (payout in black) with strifgx*) is calculated. This can be done
without knowing the functionall, knowing only the distribution of (red). Looking up the
corresponding striké™* (on the market curve (green)) one obtali(g*).

which is the value of repeated reinvestments of the initial valije) = 1 in the shortest bond
on our time discretizatiofTy, ..., Tn }. As in Sectior2 we make the assumption:

—P(Tx41:;T
The LIBORL(T}) = L(Ti) = P(Tiﬂﬂ(“k;&wrf)—ﬂ-)

(seen upon its maturity) is a (deterministic) function:¢7}),

(6)

wherex is a Markovian process given by
dz = o(t)dW underQ¥, 2(0) = m.

Note that this does imply that the numéraiW&T}) given in @) is not a function ofx(T%)
alone. Here the numérai¥(T;) is path-dependent, i.e. it is given as a functionz¢Ty),
.’E(Tl),. . ,$(T‘Z‘,1):

i—1
N(T;;2(To),z(Th), ..., z(Ti—1)) == H(l + L(Ty; 2(Tk)) (Th41 — Tk), 9
k=0

and Fp,_,-measurable. In contrast to this for the Markov-functional model under termi-
nal measure we had that the numéraW€T;) was a function ofz(7;) alone (i.e. not path-
dependent anéFr,-measurable, nafr, _,-measurable).

2.2.1 Calibration of the Markov-functional model under spot measure

The calibration procedure of the Markov-functional model under the terminal measure was
presented in12] and Sectiorn?2.1.2gave a streamlined presentation of the idea. It seems as

if the feasibility of the calibration process is tied to the choice of the terminal measure as
it induced a simplédackward inductiorfor the LIBOR functionals. The LIBOR functionals
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were calculated through the pricing of digital caplets which simply involved expectations of
indicator functionals (ie. half integrals over given distributions).

We will show that the calibration procedure of the Markov-functional model under the spot
measure is given by a simgi@rward inductionfor the LIBOR functionals. They are calculated
through the pricing of a portfolio of a caplet and digital caplets. This involves only a simple
half integral over the given distribution and a known expectation step.

2.2.2 Forward induction step

We assume that the LIBORS(T}) for T; < T; and thusN (7;) have already been calculated
and present the induction sté&p — T, .° Together withV(0) := 1 this gives the calibration
procedure as forward-in-timealgorithm. LetVr, (7)) denote the timé&, value of a product
with a timeT; 1 valueVr, (T;+1; L(T;)) depending orl.(T;) only (e.g. the value of a caplet
or digital caplet with fixing datd’; and payment dat€;, ;). Then the value of this product is

Vr,(Tit1; L(T5))
(1 + L(T;)(Tig1 — T3))N(T3) | fTO)

Vi, (0) = N(O)E (

On the right hand side, we take the expectation of a function dependifign and N (T;).

As the NumeraireN (7T;) is known from the previous induction step the functional form of
L(T;; 2(T;)) is the only unknown in this equation and it may be used to calibrate the functional
form ¢ — L(T;; €) to given market prices.

2.2.3 Dealing with the path-dependency of the numéraire

The path-dependency of the numéraig ifnplies that (conditional) expectations have to be
calculated time-step by time-step using

p(Va0) | ) p(Vri)

N(Ty) N(Ti_1) | fTi)

where

 E(Ve(To) | Fr,)
Ve (Ti1) = + L(Tyo-1)(The — Tho—1)”

The need for the time step-by-time step calculation of conditional expectations (induced by
the path-dependency of the numéraire) seems to be a major computational bottleneck, when
compared to the Markov-functional model in terminal measure. However, we will discuss
in Section2.3 that 7, conditioned expectations may be calculated fast using a single scalar
product with precalculated projection vectors.

2.2.4 Efficient calculation of the LIBOR functional from given market prices

The LIBOR functional are now derived from the model pricing formula of a portfolio of a
caplet and digital caplets. Consider the following payout function

Vi, gk (Tit1, L(T;)) == { 0 ) (T ) else

paid inT;, 1. (10)
This is adigital caplet in arrearsor equivalently the portfolio of strike K caplet andK +

ﬁ strike K digital caplets. Given market prices of caplets, we have market prices for

9 Note thatN (T;) depends oL (T}) for T; < T; only.
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the digital caplet in arrears for any striké (see Lemma in the appendix). Its model price is
given by

ViR (To)

( Vr, k(Tiv1)

L+ L(T3, 2(T3) ) (Tiv1 — 1) - N(T3)
= E(]l(L(Ti,x(Ti)) -K) - N(IT,) |-7:To)
——
Fr,_,-measurable

L
N(T3)
wherel denotes the indicator function with R) = 0 if R < 0and1(R) = 1if R > 0 and

¢ — L(T;,¢) denotes the functional form of the LIBOR, assumed to be increasing: i
such that

|
=

| fTo)

= B(B(L(L(T, a(T) ~ K) | Fr,) - w7 | P ),

L(T;,z*) =K (12)
we have

Vr, k(Tie1) = E(U(L(T;, 2(T3)) = K) | (Ti-1,¢)) (#(T3) — 27) [ (Ti-1,€))

—E(1
=/f (- &0(Tia, T))) dn.

This reduces the model price to an integral over the indicator function(al) and then taking

the expectatiors (Xg:g | ]—'TO). The latter is known from the previous calibration steps

from T;_, back toTy. It is implemented efficiently as a scalar product with a pre-calculated
projection vectot?

The calculation of the functional fornk(T;;¢) thus involves the calculation of model
prices as outlined above for suitable discretization paifitand calculating the corresponding
strikesK by inverting the market-price function. This determid€q’;, z*) through @1).

The calibration step is as simple as under the terminal measure: Model prices of calibration
products are evaluated by a half-integral together with a known expectation step and matched
with the market-price function. Here, the half integral only represents a slightly different
product.

Often a certain measure is chosen to simplify the pricing of a given product (e.g. the
Black '76 caplet pricing formula is best derived under the terminal measure associated with
the caplets payment date). Here this technique is reversed by considering a certain product
with a simple (model) pricing formula under a given measure. The suitable product for the
terminal measure is the digital caplet while the digital caplet in arrears seems the best choice
for the spot measure.

2.3 Remark on the implementation
Given some functiong — f(¢) and a lattice time and state discretization
{ep, k| k=1,...,m} C2(T},Q) =R, 0<j<n,

wheremg = 1, zg, 1 = xo. The expectation of (x(7;4+1)) conditioned on state(T;) = z,
is given by

.[ F(6) - 8(€ — w7, 1 52)dE, (12)

10 we will discuss this aspect of the implementation in the next section.
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whereg(-; &) is the density of the normal distribution with variante = f;}“ o%(r)dr. The
approximation of this integral within the lattice is given by a numerical integration based on
sampled valuegy, := f(x1, 1). We represent this integration by

AR (froes Fne) T (13)
WhereA%ﬁ+1 is a linear operator given byra; x m;1-matrix. Defining
Tit1 i Tit1
Apitt o= AT Apt, (14)
the large time expectation step
E(f(2(Tia) [ {2(To) = x0})

is represented numerically bﬁy%“. The matrix multiplication withA%+1 is fast as.A%+1 is
a row vector.

2.3.1 Fast calculation of price functionals

In the model calibration and the application of the model to derivative pricing expectations of
numéraire relative prices have to be calculated. For a givenfimefunctionalV’ we have to
calculate

i

B Wlers) = [ opigs o6~ an ui0)de. (15)

It is advantageous to viegv— m - (€ — x7, ; 52) as convolution kernel and directly
prelculate the numerical approximation of the (linear) operttes I[V].

Redefining theA%+1 in this sense, we are able to numerically calculate large time-step
expectations
V(Tit1)
N(Tit1)
even for the path-dependent numéraBehly a single scalar product of the projection vector

A%’jl with the sample vectofV (z7,,,.1),- .., V(211 n,y, ). The vectorsA;;+1 may be

i

precalculated iteratively in each forward induction step.
The elements of projection vectﬂr;z+1 are Arrow-Debreu like prices.

E( \ .7:T0)

2.3.2 Discussion on the implementation of the Markov-functional model under terminal
and spot measure

It appears that the precalculation of the large time expectation step is only necessary to cope
with the path-dependent numéraire in the spot measure Markov-functional model. However,
in our experience the precalculation of projection vectors through the iteradpis(@dvanta-

geous even for the terminal measure variant as it will prevent numerically inconsistent ways of
calculating the large-time expectation. Numerical approximation errors will lead to significant
differences between iterated expectation and single, large time-step expectations, thus violat-
ing the tower law'. By enforcing the calculation of large time step expectations by iterated
expectations the tower law will be valid in the model implementation by definition. It might
seem as if the iteratioriLf) will then lead to a propagation of numerical errors. Indeed the
terminal distributions are much less closer to a normal distribution, but exact sampling of the
terminal distribution is not crucial and the calibration quality of the discrete model will not
suffer.

11 The tower law is the equation of iterated expectationE.éE(Z | }'Tj) | ]—'T,L) =E(Z | Fr,) for T; < Tj.
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2.4 Change of numéraire in a Markov-Functional Model

Having presented Markov-functional models under different measures it is natural to ask how
the functionals relate, i.e. under which condition a functional calibrated in one measure may
be reused in the other.

Let N, M be two numéraires. Then for any traded a3éeste have:

@ — geo" <V(T’+1) |fTi)

N(T:) N(Tiy1)
V(,Tl) . M V(Tz 1) . M V(Tz 1) N(Tl 1)
M(T;) E¢ (M(T;) |fTi) =E@ N(T;>M(T;) | Fr,).
Thus
oM V(Tiy1) N(Ti11) M(T;) QY M
B e any e |7 = B (v 1)
=:C(T;,Tiy1)
ie.
s (V(Tip1) o (V(Ti)
E? <N(T:r1) -C(T;, Tit1) fﬂ) = E¢ <N(T:r1) |-7:Ti) . (16)

We want to see this in the light of a Markov-functional model and thus impose that all three
quantitiesV’, N and M are functions of a (scalar) time-discrete Markovian stochastic process
x(t). For illustration purposes we additionally impose that the functional einderQ? is

the same a¥ under@” and that

2(Tiy1) = 2(Ty) + o(Ty) AW (T}, Tiq 1) under@Q”
2(Tis1) = 2(T) + (T3, o(13)) AT + o (T5) AW (T, Tiya) underQ",

whereAT; := (T;41 — T;) - it will become clear below, that this assumption cannot hold in
general. Under these assumptions we have fropthat?

B iz O Ti) [T + n(e(T)AT: ) =B (0 am).

N(Ti+1) N(Ti+1)
ie.
B9 (R O T [a(1) ) = B9 (2 () 4 ulaT)aTs).

17)
The Equation 17) is valid for all traded assetg.'®> ChoosingV (T») = 1 (a bond) we see
that Equation17) determines.(x(Ty)) from the change of numéraire integration ker@éf.
With p fixed we see thatl(?) cannot hold for general functionals. This is clear from Gir-
sanov’s Theorem: Over a discrete time step a change of numéraire will introduce a change
in the conditional probability density, which can not be just a shift of the mean as in general
ttM‘t w(t)dt is not F; previsible. (Girsanov’s Theoren2] states that the conditional prob-

ability density changes by an infinitesimal shift of the mean (the drift adjustment) over an
infinitesimaltime-step.

Therefore, in a discrete time model it is usually not possible to perform a change of
numéraire via an adapted change of the drift (if done, it is an approximation).

Thus we have to relax our assumptions to either

12 We assume here that the two measures are identicioni.e. [T}, T;+1] is the first time interval where the
change of numéraire applies. This is no restriction, for example the argument applies to the first tifig, Sfep
13 Equation (7) is just a discrete version of Girsanov’s theorem.

14 Note thatC (T}, Ti+1) is Fr,,,-measurable but ngr, -measurable.
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e the drift u is path-dependent, i.e. we consider

daz = p(t, 2)dt 4+ o(t)dWresulting in
T;

z(T;) = x(T;-1) + / p(t, z(t))dt + o (T, 1) AW (T;—1, T;)  underQ™, or
T; 1

e the functionalV is different undeQ”v andQ™.

The first will work, because it is just the proposition of Girsanov’s Theorem.

As we do not want such a path-dependent drift in the driving process, we choose the second
approach. Then we can figrminal (!) distributions ofV through a change of the functional
form. Under the changed numéraire one has to recalculate the functionalftfrm

Note, that a recalculation of the functional forissiota change of numéraire in the strict
sense. The functional forms may be used to match the relevant terminal, but not the transition,
distributions under)”™” andQ™. As a result prices of some products, e.g. Bermudans, may
differ. The two models are not "equivalent’.

This can already be seen for the Markov-functional model under the terminal measure.
Two such models with different time horizofis, < 7T, are not equivalent over the common
time intervall0, T,,,].1°

15 This problem exists also in Monte Carlo simulations. For example, the Euler discretization of the LIBOR Market
Model's SDEAL;(t) = p;(t)Li(t)dt 4+ o4 (t)L;(t)dW (t) exhibits different discretization errors for different
measures. For the Monte Carlo simulation this problem may be solved by arbitrage-free discretization techniques
[11] or by reducing the size of the discrete time step

181t is a charming aspect of the spot measure Markov-functional model that it does not exhibit this dependence on
the time horizon (since there is no time horizon at all).
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3 The two-factor cross-currency model (stochastic FX rates)

Consider
da = o, (t)dWh z(0) = o (18)
dy = p(t, z,y)dt + oy, (t)dWs y(0) = yo

with independent incremenits i.e. < dW;,dW, >= 0. Note, that we allow for a state-
dependent drift in thg process. Furthermore, let the domestic LIBOR f&(&;) at its fixing
dateT; be a function ofc(T;) within a (calibrated) one dimensional Markov-functional model
with numéraireN (T;).

3.1 Discrete approximations of the driving processes

Since we are only interested in functionalg of y) at theT;’s, we consider a discretization of
(18). Using a Euler discretization gives

AfC(Tifl) =0zi-1V AT, 1AW,
Ay(Ti—1) = p(Ti1, 2(Ti—1), y(Ti—1))ATi—1 + 0y i1/ AT -1 AW,
with AT, 1 = (Tz — Tifl) and

AW, A 10 Omji=1 = \/ﬁfﬁlog%(t)dt,
(32 )=+ ((0)-(o 1))

,_ 1 T;
ovir = \/ar fn o0

where in (9). From now onx(T;), y(7;) denote the Euler scheme approximations:@ft+
fOTi dz, yo + fOT'i dy, given by

(19)

Sﬂ(To) =X
y(To) = yo
z(T;) = x(Ti-1) + Ax(T;-1)

y(Ti) = y(Tiz1) + Ay(Ti-1).

and we will consider functionals of the time-discrete process&sand not functionals of the
time-continuous processeks).

In the one dimensional case, there was actually no difference between the approximation
x(T;) given through the Euler scheme and the random variaple fOT dz(t) since - trivially
- the approximation was exact due to the absence of a (nonlinear) drift. Fgrphecess,
however, we allow time and state-dependent drifts and there is a potential approximation error
in the Euler scheme. This will make it important to consider functionals of the Euler scheme
approximationg:(7;) andy(T;) and not of their continuous processx@s%foT"' dz, y0+fOT" dy.

3.1.1 A note on the importance of 'early’ discretization

In the SectiorB.2we will derive the drift of thediscrete version of the underlying process.
w1 in (19) (the Euler-Scheme) from no-arbitrage considerations. This will makelitozete
modelanarbitrage free model

Another possible approach would be to derive the drift of the time-continuous process from
no-arbitrage considerations and then use a discretization scheme with an approximation of the
time-continuous drift. This, however, only guarantees that the discretized model satisfies the
no-arbitrage condition up to a discretization error.

17 This requirement may be relaxed later.
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Note on the notation

In order to calculate conditional expectations of functionals ahdy it is sufficient to know

the distribution ofx andy. The distribution ofz(T;), y(T;) is known from (9). For the cal-

culation of the expectation over one time stBp; — T; of a functionalG of some random
variableU = U(T;) + AU(T;) conditioned on stat& (T;) = £, we need to know the distribu-
tion of AU(T;)(§) only. To stress that the conditional expectatiorGyfconditioned on state
(T3, &) depends only on the incremeft (T;) we will write

BV (G|(T;,€)) = / " G- 02T rfe)an,

where 2V (T (.|¢) is the conditional probability densit§ of the random variabl\U (T;)
under the conditiod/ (T;) = &.

3.2 The functional form and the derivation of the drift
LetP(TiH; T;) denote the foreign bond guaranteeing the payment of 1 unit of foreign currency
in T}, observed ifl;. From the fundamental pricing formula)(we have that the process
Fx - 20 s aQN-martingale and thus
P(Ti41;Th) N (FX(TH-I) )
FX(T;) —0 "V _pe™ (2 7 ).

Assuming independent changes in interest ratesfaldspot over the time step; — 711
(this is the discrete version on the assumption of instantaneously uncorrelated rates) we have

FX(T) - W = B9 (FX(T;11)|Fr) - B9 (J\W%M'fTi) ’
ie. -
FX(T;) - m =g (FX(Tiy1)|Fr,) - (20)

We model the spot FX rate as instantaneously uncorrelated to the interesf.ratesb
assume

FX(Ty) is afunction ofy(7}) only. (21)

Rewriting 0) using functional forms, and further assuming that the foreign bond is deter-
ministic, (stochastic foreign interest rates will be considered later) we have (@h (

P(Tiy1; Ty, 2(T}))

P(Ty1;T) (22)
EAYT) (FX (T, y(Tig)|(Ti, 2(T), y(T2))) -
The no-arbitrage conditior2Q) — and @2) — gives a relation between the functional form

n — FX(T;,n) and the specification of the transition probability(T;), i.e. the drifty and
O'y.

FX(T;,y(T3) =

Thus, the free parameters of theX model are
e the specification of the underlying process, heye
e the specification of the FX function& X (T;; y).
and setting the drift according t@2%) will ensure that the model is arbitrage free.

18 The conditional probability densities, which form the basis of the model, are normal densities.
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3.2.1 A note on the functional form

In the single-currency Markov-functional model we could arbitrarily choose an underlying
process without imposing any restriction on the functional form of the LIBOR. The model
would always remain arbitrage free and we naturally opted for a zero-drift process. In the
cross-currency model the freedom to choogedsift is gone, as for a given FX functional we
now need a corresponding drift for the model to remain arbitrage free. If we would a priory
insist on a specific drift, e.g. a zero drift, specifying the functional forn#'af (1) would
automatically determine all other functional fords{ (7;) by (22).

The reason for the "freedom” to choose the drift for the proadsss in the ability to (still)
choose the numéraire functional. Because of

1
N(Tiy1,2(Tit1))
T; — P(Ti41; Ty, x(T;)) is aQY-martingale for any functional forrg — N(T;,¢). Con-
versely, for any functional forn§ — P(T;y1;7;,£) we may choose the numéraife —

N(T;, €) such thatl; — P(T;1;T;, 2(T;)) is aQ™-martingale. This freedom is gone once
the numéraire has been chosen.

P 15T a(T3) = N(Tra(T) - B0 (T a(z)

3.3 Examples for analytical drift calculation for special functional forms

In this section we will derive analytic formulas for the drift for some specific (analytical)
functionals forF X (7).

3.3.1 Linear functional form

ChooseF X (T;,y) = y andoy(T;,y) = oy, -y for all timesT;, whereo, ; denotes the
constantinstantaneous volatility. For this functional fogpis not just some driving process of
FX, it isthe FX and due to the choice of (T}, y) it is modelled as an Euler approximation of
a log-normal process. In this ca®®?) results in

P(Tipn: T P(T31; T,
(Tt AT, =1 (W _1> — FX(Ty,n)- (W - 1) |

This is the Euler scheme of a log-normal process which converges to a log-normal process for
AT — 0. A similar log-normal process is given by discretizing the log of the process through
an Euler scheme and applying the exponential. This is our next example.

3.3.2 Exponential functional form

Fixing the functional form taF X (T}, y) = exp(ay) (a > 0) and the diffusion tar (T;,y) =
o; = const. for all i results in a simple (instantaneously) log-normal model. By

EAYT) (X (Tyy, y(Toy)(Ti, €, m)
— EAu(TY) (exp(ay(Ti+1))|(T5,€,m))

2
= exp (a(n + wi(§,m)AT;) + 05,%2)

@
2

a2
— PX(T) o0 (s € nAT; + 50 AT,
(see Lemma in the appendix) and by@) we get

P(Ti1:T;) a?
il Sl £ A VA i AT; + — - 02 . AT;
P(T”iaTi+17€) e (5’77) " 2 0-?]77/
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and thus

1 p(TH_l,T;) a o
; AT; = -1 — | — o, AT 2
:ul(§7 77) % a 0og (P(TIL, Ti—‘,—lv 5)) 20-1/,1 g ( 3)

For this model the free parametertg;’s anda already provide enough freedom to replicate
ATM FX option prices, but not enough flexibility to replicate the FX smile.
Note, that in contrast to the log-normal model in the previous section the drifoes not
depend om here.

3.3.3 Other functional forms

It is possible to use other functional forms for the FX. This freedom allows to generate FX
skews and smiles. For some parametrized functional forms it is possible to calculate expecta-
tions analytically deriving analytical formulas for the di¥t Of course it is also possible to
solve for the drift numerically using a fast one dimensional root finder, but this will somewhat
slow down the calibration process.

3.4 Calibration to FX option prices

In this section we will describe the forward in time induction step to calibrate the model to FX
option prices. Two different routes are possible:

1. Fix a reasonable functional form, e.g. as in SecBdh2and calibrate to ATM FX op-
tions by choosing the,, ;.

2. Freely choose the functional form for each time step, e.g. a parametrized functional; this
allows for a full FX option smile calibration.

In this section we will consider the steps necessary for both alternatives.
Model price of an FX option with maturity; and strikeK are given by

iy mTi 1Ti FX TzvyT‘z _K+
Vi ) = MO8 (L0 )

Assuming that" X (T;_1) ando (T}, y) for T; < T;_; are known from previous calibration
steps, the forward in time inductidfi_; — T; is completed by calibrating(7;_,) and/or
FX(T;). The objective to fit FX option model prices to given market prices is either achieved
by using some minimization / root finding algorithm or by methods similar to those presented
for the single-currency model. Since we have already fix€f;, y) for T; < T;_, we know
the (backward) transition probabilities frafp_; to 7. Using the tower law for the conditional
expectation operator, we have

; ) +
Vg)i{’é(ption(To) = N(O)E ([FX,(ZVE(%(?()CZ)—'Z)) K] |(T0’ Lo, yO))

= N(O)B (Gidesion (i1, 2(Ti 1), 9(Ti 1)) (To, 70, 30)

where

A ) 1)) — +
Vlg;i(’ol{ption (E,l, ga 77) =E < [FX(]C\Z[—;(’ZZZ(?()%J) K] ‘(E,l, 57 7})) ' (24)

19 As a hint we refer to the parametrized functional forms for the single-currency Markov-functional model proposed
Pelsser, se€lp|.
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The calculation of the expectation

B (Vition (Ti-1 2(Ti 1), y(Ti )| (To, w0, 30)

entails a single convolution with known two-dimensional transition probabilfies- T;_ .
Since we only condition to a single poi(y, xo, yo) the computational cost is bearable in
general and quite low within a lattice implementation using precalculated projection vectors as
discussed in Sectiah 3.

Apart from this large time expectation step we have to calculate in each optimization step

Vgggmnm,h &, n) for all sample pointg, n. An optimization step consists of

1. adjusting the functional form of X (7;) and/oro (T;-1),
2. solving for the drift using the drift conditior2g),
3. calculating model prices as described above.

Assuming zero instantaneous correlatod\ W, AW, >= 0 the two-dimensional expec-
tation 24) can be simplified to allow for a much faster calibration. The transition probability
T;_1 — T; given by the Euler approximation then is

Az(Ti—1) ~ N (0,02, _|AT; ) (25)
AY(Ti1) ~ N (i1 (Y(Ti-1)ATio1, 05 ;1 AT, 1), (26)

For the case of the exponential functional form of SecBda®2 . is given by an analytical
formula

1 P(Ti—laTi7£)> a o
i AT, 1 =-log| =—————2 | — =05, _1AT; 4,
pi-1(§) 1= g< BT, T) 5y,i-1 1

while in other cases one may be forced to solveifmumerically using equatior2@). Thus

STy K
VFXOption(,Tifla §m)

= (E e T e)
1

=E% ([FX(Ti,y(Ty) — K] |(Ti-1,€,m)) - ES® (N(Tix(Ti))Kﬂhg)) 0
= o VETAWS (R X (T, (1) — KIFI(Tit,n + i1 (AT 1))

Opim1 i1 1 ; A
B ATAY (N(Ti,ﬂTi))'(T”‘“g))’

where the latter involves two, only one dimensional, expectations providing a major improve-
ment in terms of calculation complexity. Note also that the one dimensional expectation
Eo=i-1VATi-1AW1 s independent of, ,_; and7, and it can therefore be calculated out-
side the optimization for, ;_; and/or the optimization/calibration of the functional form
n— FX(T;,n).
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4 The three-factor cross-currency model
We consider a Markov process under a measitegiven by

dz = o, (t)dW;
dy = p(t, z,y, z)dt + oy (t)dWs (28)
dz =0, (t)dWs

and as before we choose Euler approximations of the the procesges given as

Ax(Ti—1) = 05,1 AW,
Ay(Ti-1) = p(Tim1, 2(Tim1), y(Ti1), 2(Ti-1))(Ti = Ti1) + 0y i1 AW (29)
Az(Ti—1) = 0., 1AW3

and consider functionals of the Euler discretisation (which are denoted fyz from now
on).

Let L denote the domestic LIBOR depending emonly, as given by assumptios)(and
FX the FX rate depending og only, as given by assumptio2l). Let N(7;) denote the
numeéraire of the single currency domestic model, which should also serve as numéraire for the
three-factor model. We make the following assumption on the foreign interest rates functional

i T(TN e TAT. T .- — 1—P(Th413Tx)
The foreign LIBORL(T;) := L(T;, T;41; T;) := BT 1) T
(evaluated at its maturity;) is a (deterministic) function of(7T;), (30)

wherez is a Markovian process, given by
dz = o, (t)dW3 underQ¥, z(0) = 2.

As a start for our analysis we assume that interest rates and FX rates are instantaneously
independent in the following sense that their conditional transition probabilities are indepen-
dent over the smallest discrete time step;, 7;. In other words, we assume thatV,’s are
independent. This assumption may be relaxed.

Consider a foreign currency productdepending at tim&; on the foreign LIBORE(E)
payingV (L(T;)) - FX(T;+1) atT;41 to a domestic investor (e.g. a foreign caplet or a foreign
digital caplet). This is a traded asset for the domestic investor and the price of this product is
given by

o F]\i((;?;) . (V(L(T;\)])(fii(ﬂﬂ) |fTO>
=E (V(i(TZ)) -E (Pm|fﬂ) |‘7:T0) .
We haveE (%Vn) = %FX(TZ) and thus
- FX(Ty) V(L(T)) FX(T))
Y N —F (1+E<Ti><n+l -T,) N(T) fT“)

Since the conditional transition probabilities frafn., to T; of z andx, y are independent we
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FX(Ti-1) )
: = ‘fTo
(14 L(Ti-1)(Ts = Ti-1)) - N(Ti-1)

_ V(L(T:)) L (FX(T)
= (E (1 + L(T)(Tiq — T3) fT’”) . ( N(T;) |fT"‘1> fT”)

+ L(Ti1)(T, — Ti-)) 'fT“> " N(Tio)

and by induction we have

_E< V@) | T) FX(Ty)
[Tio(1+ L(Te)(Thyr — T1)) ~ °)  N(To)

This shows that in our time-discrete model, under the assumption of independent increments
for the processes, y andz, the pricing in the foreign currency behaves as if one considers
[Th—o(1 4 L(T%)(Tks1 — Tx)) @s numéraire, i.e. as if the foreign currency functionals would
be calibrated to théoreigncurrencies spot measure.

Thus the consideration of Secti@ apply and the foreign currency interest rate Makrov
functionals may be calibrated as presented there. In addition we may draw the following
conclusions:

e For model consistency it is preferable to chose the spot measure for the domestic
Markov-functional model.

e For efficiency, it is preferable to calibrate the single-currency model(s) in spot measure,
because then, the functionals may be used without any change in the three-factor model
with instantaneously uncorrelated driving processes.

It is now straight forward to calibrate FX Options, which is done exactly as presented in Sec-
tion 3.4

The case of non-zero correlation

We have restricted the presentation to the case of zero instantaneous correlation of the driving
processes. It is straight forward to derive and implement the model in the case of non-zero
correlations. While zero correlation simplified the calibration of the models 22g27)), the
expectation operator will not decouple in the case of non-zero correlation and the calculation
cost are significantly increased. In addition one has to consider a change of numéraire drift for
the foreign currency’s driving process Considering only low correlations one may retain the
ability of fast calibration by assuming zero correlation over the calibration timdstep, 7]

while using the correlated transition probabilities for the expectation over the time interval
[0, T;_1] (we refer here to the notation in Sectidr).
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5 Other hybrid Markov-functional models

In the same way as we introduced a two factor Markov-functional model to model the FX along
a single-factor Markov-functional model (see Sect®nve may model an equity Markov-
functional model.

Given the driving processes

dz = o, (t)dW; z(0) = g (31)
dy = p(t, z, y)dt + oy (t)dW2 y(0) = yo
let L(T;) denote the LIBOR rate seen upon its fixing dategiven as a functional of a (cali-
brated) one dimensional Markov-functional model, i.e. depending @p) only and letN (T;)
denote the numéraire of this Markov-functional model.
Let S denote some traded asset (equity) for which we assume that

S(T%) is a function ofy(T%) only. (32)

Assuming that the discrete driving process have independent increments over a time step
[T;, T;+1] (see Sectiol) we get (corresponding t@2))
S(T;,y(Ty)) = P(Tiv1: Tiy 2(T3)) (33)
BT (S(Ti 1, y(Tip)(Ti, 2(T0), y(T7))) -

from which we may solve for the drift. So all aspects are as discussed in Sédfsetting
FX =SandP =1).

(©2004 Christian Fries 19 Version 1.5.1. (20040504)
http://www.christian-fries.de/finmath/markovfunctional First version: December 2002


http://www.christian-fries.de/finmath/markovfunctional

Cross-Currency and Hybrid Markov-Functional Models

A Auxiliary calculations
For convenience we provide here some of the (well known) results used during our discussion.
Lemma 1 (Call-spread approximation of a digital caplet): Let ch;;let(K ) denote the

price of a caplet with strikél (and maturityZ;) given in some (arbitrary) arbitrage free pricing

model. Assume that a differentiable market-price cuive— Vi;let(K) is given. Then the

prices of digital capletVdTiéital(K) under the same model are given by

(K)=-——1 2 ym gy,

Vi
Ti+1 _ E oK caplet

digital
The approximation of the digital caplet prices by finite differences

V::aplet (K + €; O) - chaplet (K — € 0)
2e(Tysr — 1)

Viaigital (K 0) = —
is calledcall-spreadapproximation.

Lemma 2 (Expectation ofexp(a - X), X normally distributed): Let ¢(& p,0) =
L .35 denote density of the normal distribution afdz) = [ ¢(£0,1)d¢

V2mo

the distribution function of the standard normal distribution. Then

ho _ 2 _ 2
/h ¢ (g, o) do = [(I)(hz (zij—i—ao ))_q)(hl (y;—ao )) ey

1

and thus we have for the expectatiBiflexp(a - X)) for a random variableX with density

o(y,0):

o0 0252
/ et p(asy,0)de = eVt 2,

— 00

Lemma 3 (Price of a digital caplet in arrears, given implied Black volatility): Let
o(T;, K) denote the implied Black volatility of a strik& caplet with fixing datel’; and pay-
ment datel; ., i.e. the price of such a caplet is given by

Vg?ﬁlet(o) = P(Ti1) - (Tig1 — T;) - (Li(0)®(dy) — K®(d-)), (34)

In(289) 4 16%(T K) T,

O’(T,,.K)\/T,L

where®(x) := \/%7 [ exp(—%)dy anddy =

Given a digital caplet in arrea$paying inT;

Dig.Arrears 1 If LZ(E) > K
Vi () = {0 else

the value is given by
VA (0) =P(Tig1) - (Tigr — 1) - Li(0)®(dy) + P(Ti41) - (d-)
do(T;, K
(4 (T~ T)R)PT) Li0) (T — T/ T () 702

20 The wordarrears here relates to the fixing, which is behind the period if compared to a digital with fixing date
T;—1 and payment daté;.
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Proof: The payout of the digital in arrears is equivalent in value to a payout of

L+ Li(T;) - (Tiga = T3)  if Ly(T3) > K

ig.Arrears
Ve Tii1) =
T K (Ti) 0 else

made inT;;1, which is equivalent to the payout ¢f + (711 — T;) K) times a digital caplet
and1 caplet (both with strikés). Since the value of a digital caplet is giverchy

VRS 0) = P(Ty0) (@) + Lu(0)(Ton — T/ T () D)y (3
we have
RT—
= (4 (T~ TP (@) + LiO0) (T — T)y/Te () 220 E,

+ P(Tiy1) - (Tip1 — T;) - (Li(0)®(dy) — K(d-))

= P(Tit1) - (Tiga — T) - Li(0)@(d4) + P(Tiga) - (d—)

+ (14 (Ti1 = T)K)P(Tig1) Li(0)(Ti1 — Ti)\/iq)l(d*)%

21 Equation 85) follows from differentiating 84) with respect tak. The first term relates to th& derivative, while
the second term relates to the Vega followed by #8&/5).
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