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Abstract

In this paper we investigate the so calledforesight biasthat may appear in the Monte-Carlo
pricing of Bermudan and compound options if the exercise criteria is calculated by the same
Monte-Carlo simulation as the exercise values. The standard approach to remove the foresight
bias is to use two independent Monte-Carlo simulations: One simulation is used to estimate
the exercise criteria (as a function of some state variable), the other is used to calculate the
exercise price based on this exercise criteria. We shall call this thenumerical removal of the
foresight bias.

In this paper we give an exact definition of theforesight biasin closed form and show how
to apply an analytical correction for the foresight bias.

Our numerical results show that the analytical removal of the foresight bias gives similar
results as the standard numerical removal of the foresight bias. The analytical correction allows
for a simpler coding and faster pricing, compared to a numerical removal of the foresight bias.

Our analysis may also be used as an indication of when to neglect the foresight bias removal
altogether. While this is sometimes possible, neglecting foresight bias will break the possibility
of parallelization of Monte-Carlo simulation and may be inadequate for Bermudan options
with many exercise dates (for which the foresight bias may become a Bermudan option on the
Monte-Carlo error) or for portfolios of Bermudan options (for which the foresight bias grows
faster than the Monte-Carlo error).

In addition to an analytical removal of the foresight bias we derive an analytical correction
for the suboptimal exercise due to the uncertainty induced by the Monte-Carlo error. The com-
bined correction for foresight bias (biased high) and suboptimal exercise (biased low) removed
the systematic bias even for Monte-Carlo simulations with very small number of paths.
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1 Introduction

Estimating conditional expectation in a Monte-Carlo simulation is a frequent challenge in the
pricing of complex derivatives, e.g. options on options or Bermudan options. Here the payoff
is given by the optimal choice between an underlying3 and the value of a future option, the
latter given by a conditional expectation.

The problem of pricing Bermudan or American style options by Monte Carlo is tackled
by numerous approaches, like binning (aka. state space partitioning), parameter optimization
methods, regression methods, dual methods (optimal stopping), see e.g. [2, 6, 7, 9] and refer-
ences there in.

Here we concentrate on those methods that rely on an estimator for the conditional expec-
tation. If the conditional expectation or a suitable approximation for it is known, the optimal
exercise strategy (i.e. the optimal stopping time) may be calculated by the backward algorithm.
Then the price of the Bermudan option is the (unconditional) expectation of the values under
optimal exercise.

If however the conditional expectation estimator (hence the optimal exercise strategy) and
the pricing of the Bermudan share the same Monte-Carlo simulation, a systematic positive
bias will occur: the foresight bias. The exercise strategy may be super optimal by exercising
optimal on the common Monte-Carlo error. In other words:

The foresight bias is the value of the option on the Monte Carlo error.

It is straight forward to eliminate the foresight bias by introducing two independent Monte-
Carlo simulations.4 However this makes the pricing slow and the implementation a bit cum-
bersome. We show that a simple calculation allows us to

a) give a very exact estimate of the foresight bias and

b) apply an correction that removes the foresight bias (without the need of a second inde-
pendent Monte Carlo simulation).

In fact, we simple calculate the price of the option on the Monte Carlo error. This allows us to
analytically correct the foresight bias making pricing faster and coding leaner.

1.1 Plan of the Paper

We start with a small introduction to the pricing of Bermudan options in Monte Carlo. For a
more detailed introduction to the pricing of Bermudan options in Monte Carlo and a review
of the literature see e.g. [6, 9] and references therein. In Section2 we give a fairly general
definition of an Bermudan option and define the optimal exercise time and the optimal exercise
value. In Section3 we present the well known backward algorithm by which the optimal
exercise value and thus the Bermudan option value may be calculated. The main ingredient
to the backward algorithm is the exercise criteria and here an estimator for the conditional
expectation. The estimation of conditional expectation in Monte-Carlo is shortly reviewed in
Section4.

In Section5 we will then present an estimator for theforesight biasand discuss the (ana-
lytic) removal of the foresight bias by a small additional term in the backward algorithm. We
conclude with some numerical results in Section6.

3 We use a rather general definition of Bermudan option, where the underlying may be different at each exercise
date and where it may be a constant (like a strike for a compound option) or stochastic.

4 The exercise criteria will still be influence by the Monte Carlo error one of the simulations, but exercising will give
the (independent) Monte Carlo error of the other simulation.
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2 Bermudan Options: Notation

We now give a fairly general definition of an Bermudan option and fix notation. Let{Ti}i=1,...,n

denote a set of exercise dates and{Vunderl,i}i=1,...,n a corresponding set of underlyings. The
Bermudan option is the right to receive at one and only one timeTi the corresponding under-
lying Vunderl,i (with i = 1, . . . , n) or receive nothing.

At each exercise dateTi, the optimal strategy compares the value of the product upon
exercise with the value of the product upon non-exercise and chooses the larger one. Thus the
value of the Bermudan is given recursively

Vberm(Ti, . . . , Tn;Ti) := max
(
Vberm(Ti+1, . . . , Tn;Ti) , Vunderl,i(Ti)

)
, (1)

whereVberm(Tn;Tn) := 0 andVunderl,i(Ti) denotes the value of the underlyingVunderl,i at
exercise dateTi.

2.1 Relative Prices

Let N(t) denote the timet value of a chosen Numéraire andQN the corresponding pricing
measure, see [1]. Since the conditional expectation (w.r.t. the pricing measure) of a Numéraire
relative price is a Numéraire relative price the presentation will be simplified by considering
the Numéraire relative quantities. We will then define:

Ṽunderl,i(Tj) :=
Vunderl,i(Tj)

N(Tj)
und Ṽberm,i(Tj) :=

Vberm(Ti, . . . , Tn;Tj)
N(Tj)

,

thus we have

Ṽberm,n ≡ 0,

Ṽberm,i+1(Ti) = EQN (
Ṽberm,i+1(Ti+1) | FTi

)
,

Ṽberm,i(Ti) = max
(
Ṽberm,i+1(Ti) , Ṽunderl,i(Ti)

)
,

where{Ft} denotes the filtration. The relative prices are marked by a tilde. The Bermudan
pricing consists of finding the relative value of the longest BermudanṼberm,1 as seen inT0

(today). We write shortlỹVberm(T0) := Ṽberm,1(T0).

2.2 Bermudan Option as Optimal Exercise Problem

A Bermudan option consists of the right to receive one (and only one) of the underlyings
Vunderl,i at the corresponding exercise dateTi. The recursive definition (1) represents the
optimal exercise strategy in each exercise time. We formalize this optimal exercise strategy:

For a given pathω ∈ Ω let

T (ω) := min{Ti : Vberm,i+1(Ti, ω) < Vunderl,i(Ti, ω)}.

The definitions ofT gives a description of the exercise strategy:T (ω) is the optimal exercise
time on a given pathω. It should be noted that{T ≤ Tk} ⊂ FTk

(i.e.T is a stopping time).

2.3 Bermudan Option Value as single (unconditioned) Expectation:
The Optimal Exercise Value

With the definition of the optimal exercise strategyT it is possible to define a random variable
which allows to express the Bermudan option value as a single (unconditioned) expectation.
With

Ũ(Ti) := Ṽunderl,i(Ti) i = 1, . . . , n
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denoting the relative price of thei-th underlying upon its exercise dateTi we have for the
Bermudan value

Ṽberm(T0) = EQ(
Ũ(T )

∣∣ FT0

)
.

The random variablẽU(T ) may be calculated directly using theBackward Algorithm. We will
consider this in the next section and conclude by givingŨ(T ) a name:

Definition 1 (Option Value upon Optimal Exercise): q
Let Ũ be the stochastic process who’s timet value Ũ(t) is the (Numéraire relative) option
value received upon exercise int. Let T be the optimal exercise strategy. Then the random
variableŨ(T ), where

Ũ(T )[ω] := Ũ(T (ω), ω),

is the (Numéraire relative)option value received upon optimal exercise. The (Numéraire rela-
tive) Bermudan option value is given byEQ(

Ũ(T )
∣∣ FT0

)
. y

Thus the value ofVberm(T1, . . . , Tn) may be expressed through a single expectation con-
ditioned toT0 and does not need any calculation of a conditional expectation at later times,if
we have the optimal exercise dateT (ω) for any pathω.

3 The Backward Algorithm

The random variablẽU(T ) may be derived in a Monte-Carlo simulation through the Backward
algorithm,giventhe exercise criteria (1), i.e. the conditional expectation. The algorithm con-
sists of the application of the recursive definition of the Bermudan value in (1) with a slight
modification. Let:

Induction start:

Ũn+1 ≡ 0

Induction step i + 1 → i for i = n, . . . , 1:

Ũi =

{
Ũi+1 if Ṽunderl,i(Ti) < EQ(Ũi+1|FTi

)
Ṽunderl,i(Ti) else.

From the tower law we have by inductionEQ(Ũi+1|FTi
) = EQ(Ṽberm,i+1(Ti)|FTi

) and
thus

Ṽberm(T1, . . . , Tn, T0) = EQ(Ũ1|FT0) (2)

andŨ1 = Ũ(T ) with the notation from the previous section.

The recursive definition of̃Ui differs from the recursive definition of̃Vberm,i(Ti). We have

Ũi =

{
Ũi+1 if Ṽunderl,i(Ti) < EQ(Ũi+1|FTi)
Ṽunderl,i(Ti) else,

and

Ṽberm,i(Ti) =

{
EQ(Ṽberm,i+1(Ti+1)|FTi) if Ṽunderl,i(Ti) < EQ(Ũi+1|FTi)
Ṽunderl,i(Ti) else.

This is a subtle but crucial difference. While both definitions give the Bermudan option value
(through application of (2)), we have that the definition of̃Ui requires the conditional expecta-
tion operator only to calculate the exercise criteria.
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4 Conditional Expectation Estimators

We concentrate on the problem of calculating the conditional expectation of a Numéraire rela-
tive value processVN .

4.1 Conditional Expectation as Functional Dependence

Let us reconsider the calculation of the

0 t

W(t,ω)

T1

Figure 1: Brute force calculation of the conditional
expectation by pathwise resimulation – not feasible
since the number of paths grows exponentially with
the number of exercise dates.

conditional expectation through brute force
re-simulation as depicted in Figure1. On
each path of the original simulation a re-
simulation has to be created. These re-
simulations differ in their initial conditions
(e.g. the valueS(T1) in a simulation of a
stock price following a Black-Scholes Mod-
ell, or the valuesLi(T1) in a simulation of
forward rates following a LIBOR Market
Model). These initial conditions areFT1

measurable random varialbes (known as of
T1). Thus the conditional expectation is a
function of these initial conditions (and pos-
sibly other model parameters known inT1).
If it is known that the conditional expecta-

tion is a function of aFT1 measurable random variableZ (we assume here thatZ : Ω → Rd

with somed) we have

EQN

(
V (T2)
N(T2)

| FT1

)
= EQN

(
V (T2)
N(T2)

| Z
)

. (3)

4.2 Perfect Foresight

In a path simulation the approximation ofEQ
(

V (T2)
N(T2)

| Z
)

will be given by averaging over all

paths for whichZ attains the same value. However in general the situation will be such that
there are no two or more paths for whichZ attains the same value - apart from the construction
of the unfeasible resimulation. In other word one would use the crude approximation

EQ
(

V (T2)
N(T2)

| Z
)

[ω] ≈ V (T2, ω)
N(T2, ω)

This approximation is called perfect foresight.

4.3 Binning

An improvement is given by abinning, where the averaging will be done over those paths for
whichZ lies in a neighborhood (bin). If the quantities are continuous we have:

EQ
(

V (T2)
N(T2)

| Z
)

[ω] ≈ EQ
(

V (T2)
N(T2)

| Z ∈ Uε(Z(ω))
)

,

whereUε(Z(ω)) := {z | ||Z(ω)− z|| < ε}.
Instead of defining a binUε(Z(ω)) for each pathω it is more efficient to start with a

partition of Z(Ω) into a finite set of disjoint binsUi ⊂ Z(Ω). The approximation of the
conditional expectation

EQ
(

V (T2)
N(T2)

| Z(ω)
)
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will then be given by

Hi := EQ
(

V (T2)
N(T2)

| Z ∈ Ui

)
whereUi denote the set withZ(ω) ∈ Ui.

Example: Pricing of a simple Bermudan Option on a Stock

We illustrate the method in a simple Black-Scholes model for a stockS. In T1 we wish to
evaluate the option of receivingN1 ·(S(T1)−K1) in T1 or to receiveN2 ·max(S(T2)−K2, 0)
at later timeT2 (whereN1, N2 (notional),K1, K2 (strike) are given). The optimal exercise in
T1 compares the exercise value with the value of theT2 option, i.e.

EQ
(

N2 ·max(S(T2)−K2, 0)
N(T2)

| FT1

)
.

From the model specification, e.g. here a Black-Scholes model

dS(t) = r · S(t)dt + σS(t)dW Q(t), N(t) = exp(rt)

it is obvious that the price of theT2 option seen inT1 is a given functionS(T1) and the given
model parameters (r, σ). Thus it is sufficient to calculate

EQ
(

N2 ·max(S(T2)−K2, 0)
N(T2)

| S(T1)
)

.

In this example the functional dependence is known analytically. It is given by the Black-
Scholes formula. Nevertheless we use the binning to calculate an approximation to the condi-
tional expectation. If we plot

N2 ·max(S(T2, ωi)−K2, 0)
N(T2)︸ ︷︷ ︸

Continuation Value

as a function of S(T1, ωi)︸ ︷︷ ︸
Underlying

we obtain the scatter plot in Figure2. For a givenS(T1) none or very few values of the
continuation valuesexists. An estimate is not possible or exhibits a foresight bias. For an
interval[S1−ε, S1 +ε] with sufficiently largeε we have enough values to calculate an estimate
of

EQ
(

N2 ·max(S(T2)−K2, 0)
N(T2)

| S(T1) ∈ [S1 − ε, S1 + ε]
)

which in turn may be used as estimate of

EQ
(

N2 ·max(S(T2)−K2, 0)
N(T2)

| S(T1) = S1

)
.

4.4 Regression Methods - Least Square Approximation of the Condi-
tional Expectation

Let us start with a fairly general definition of theleast square approximationof the conditional
expectation of random variableU .

Definition 2 (Least Square Approximation of the Conditional Expectation): q
Let (Ω,F , Q, {Ft}) be a filtered probability space andV aFT1 measurable random variable
defined as the conditional expectation ofU

V = EQ(U | FT1),
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Continuation versus Exercise Value (pathwise)
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Figure 2: The value realized on a path upon non exercise as a function of the value realized upon exercise.

whereU is at leastF measurable. Furthermore letY := (Y1, . . . , Yp) be a givenFT1 measur-
able random variable andf : Rp × Rq a given function. LetΩ∗ = {ω1, . . . ωN} a drawing
from Ω (e.g. a Monte-Carlo simulation corresponding toQ) andα∗ := (α1, . . . , αq) such that

||U − f(Y, α∗)||L2(Ω∗) = min
α
||U − f(Y, α)||L2(Ω∗)

where||U − f(Y, α∗)||2L2(Ω∗)
=

N∑
j=1

(U(ωj)− f(Y (ωj), α∗))2. We set

V LS := f(Y, α∗).

The random variableV LS isFT1 measurable. It is defined overΩ and aleast squareapproxi-
mation ofV onΩ∗. y

The Method of Longstaff and Schwartz5 uses a functionf with q = p and

f(y1, . . . , yp, α1, . . . , αp) :=
p∑

i=1

αi · yi,

such thatα∗ may be calculated analytically as a linear regression.

Lemma 3 (Linear Regression): Let Ω∗ = {ω1, . . . , ωn} be a given sample space,V : Ω∗ →
R andY := (Y1, . . . , Yp) : Ω∗ → Rp given random variables. Furthermore let

f(y1, . . . , yp, α1, . . . , αp) :=
∑

αiyi.

Then we have for anyα∗ with XTXα∗ = XTv

||V − f(Y, α∗)||L2(Ω∗) = min
α
||V − f(Y, α)||L2(Ω∗),

where

X :=

 Y1(ω1) . . . Yp(ω1)
...

...
Y1(ωn) . . . Yp(ωn)

 , v :=

 V (ω1)
...

V (ωn)

 .

If (XTX)−1 exists thenα∗ := (XTX)−1XTv.

5 See [8].
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Definition 4 (Basis Functions): q
The random variablesY1, . . . , Yp of Lemma3 are calledBasis Functions(explanatory vari-
ables). y

4.4.1 Example: Evaluation of an Bermudan Option on a Stock (Backward Algorithm
with Conditional Expectation Estimator)

We consider a Bermudan option on a Stock. The Bermudan should allow exercise at times
T1 < T2 < . . . Tn. Upon exercise inTi the holder of the option will receive

Ni · (S(Ti)−Ki)

once. If no exercise is made he will receive nothing.
We will apply thebackward algorithmto derive the optimal exercise strategy. All payments

will be considered in their Numéraire relative form. Thus the exercise criteria given by a
comparison of the conditional expectation of the payments received upon non-exercise with
the payments recieved upon exercise.

Induction start: t > Tn Beyond the last exercise we have:

• The value of the (future) payments is̃Un+1 = 0.

Induction step: t = Ti, i = n, n− 1, n− 2, . . . 1 In Ti we have:

• In the case of exercise is inTi the value is

Ṽunderl,i(Ti) :=
Ni(S(Ti)−Ki)

N(Ti)
. (4)

• In the case of non-exercise inTi the value isṼhold,i(Ti) = EQ(Ũi+1 | FTi
). This value

is estimated through a regression for given pathsω1, . . . , ωm:

– Let Yj be given (FTi
measurable) basis functions.6 Let the matrixX consist of the

column vectorsYj(ωk), k = 1, . . . ,m. Then we have Ṽhold,i(Ti, ω1)
...

Ṽhold,i(Ti, ωm)

 ≈ X · (XT ·X)−1 ·XT ·

 Ũi+1(ω1)
...

Ũi+1(ωm)

 . (5)

• The value of the payments of the product inTi under optimal exercise is given by

Ũi :=

{
Ṽunderl,i(Ti) if Ṽhold,i(Ti) < Ṽunderl,i(Ti)
Ũi+1 else.

Remark 5 (Backward Algorithm): Our example is of course just the backward algorithm
with an explicit specification of an underlying (4) and an explicit specification of an exercise
criteria, here given by the estimator of the conditional expectation (5).

Remark 6 (Binning as Linear Regression): In [6] it is shown that binning may be under-
stood as a special case of the linear regression: Binning is a linear regression where the basis
functions are the indicator functions of the bins. See [6] for the (simple) proof.

6 Suitable basis functions for this example are1 (constant),S(Ti), S(Ti)
2, S(Ti)

3, etc., such that the regression
functionf will be a polynomial inS(Ti).
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5 Foresight Bias: Classification, Calculation & Removal

The foresight bias is an option on the Monte Carlo error of the conditional expectation esti-
mator. The standard deviation of the Monte Carlo error is the volatility of that option and the
foresight bias is always non-negative.

Consider the optimal exercise valuemax(K, E(Ṽ | Z)) where the conditional expectation
estimator has a Monte Carlo error which we denote byε. Then the foresight bias is given by:

E
(
max(K, E(Ṽ | Z) + ε)

∣∣ Z
)

= max(K, E(Ṽ | Z)) + foresightbias.

Remark 7 (Notation): Here and in the following we will consider the exercise criteria
max(K, E(Ṽ | Z)), i.e. with the notation used in the previous sectionṼ stands forŨi+1

andK stands for̃Vunderl,i(Ti) for somei. The conditional expectation estimator (e.g. binning,
regression) will be denoted byEest in place ofE, i.e.

Eest(Ṽ | Z) = E(Ṽ | Z) + ε.

5.1 Numerical Removal of the Foresight Bias

The standard approach to remove the foresight bias is to use two independent Monte-Carlo
simulations. One will be used to estimate the exercise criteria (as a functional dependence on
some state variable), the other will be used to calculate the payouts.

5.2 Motivation for an Analytical Estimate and Removal of Foresight
Bias

The numerical removal of the foresight bias has two disadvantages:

• Numerical removal of the foresight bias slows down the pricing. Two independent
Monte-Carlo simulations of the stochastic processes have to be generated. For some
models (e.g. high dimensional interest rate models like the LIBOR Market Model) the
generation of the Monte-Carlo paths is relatively time consuming.

• Numerical removal of the foresight bias makes the code of the implementation cum-
bersome. It is a desired design pattern to separate the stochastic process model and the
generation of the Monte-Carlo paths from product pricing. The structure of the code will
likely become less clear if a second independent simulation has to be created.

An alternative to the numerical removal of the foresight bias is to not remove the foresight
bias at all. This approach may be justified by the fact that the foresight bias will tend to zero
as the number of paths tends to infinity. In addition the foresight bias is rather small, usually it
is within Monte-Carlo errors. We will give an estimate of the foresight bias in the Section5.3.

However neglecting foresight bias may create larger relative errors when considering mul-
tiple exercise dates or a book of multiple options with foresight bias. The discussion of whether
it is feasible to neglect the foresight bias will be given in Section5.7.

5.3 Estimation of the Foresight Bias

We want to asses the foresight bias induced by a Monte-Carlo errorε of the conditional expec-
tation estimatorE(Ṽ | Z), i.e. we consider the optimal exercise criteria

max(K, E(Ṽ | Z) + ε).
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Conditioned on a givenZ = z∗ we assume thatε has normal distribution with mean0 and
standard deviationσ for fixed E(Ṽ | Z), i.e. we assume independence ofṼ |Z. Then we have
the following result for the foresight bias:

Lemma 8 (Estimation of Foresight Bias): Given a conditional expectation estimator of
E(Ṽ |Z) with (conditional) Monte-Carlo errorε having normal distribution with mean0 and
standard deviationσ will result in a bias of the conditional mean ofmax(K, E(Ṽ |Z)+ε) given
by

σ · φ(−µ−K

σ
)︸ ︷︷ ︸

foresight bias︸ ︷︷ ︸
biased high

+ (µ−K) ·
(
1− Φ(−µ−K

σ
)
)

+ K︸ ︷︷ ︸
smoothed payout

−max(K, E(Ṽ |Z))︸ ︷︷ ︸
true payout︸ ︷︷ ︸

diffusive part, biased low

, (6)

whereµ := E(Ṽ |Z), φ(x) := 1√
2π

exp(− 1
2x2) andΦ(x) :=

∫ x

−∞ φ(ξ) dξ.

Proof (of Lemma 8): Let ε have Normal distribution with mean0 and standard deviationσ.
Fora, b ∈ R we have withµ∗ := b− a

E(max(a, b + ε)) = E(max(0, b− a + ε)) + a = E(max(0, µ∗ + ε)) + a

=
1
σ

∫ ∞

0

x · φ(
x− µ∗

σ
) dx + a =

1
σ

∫ ∞

−µ∗
(x + µ∗) · φ(

x

σ
) dx + a

=
∫ ∞

−µ∗
σ

(σ · x + µ∗) · φ(x) dx + a

= σ · φ(
µ∗

σ
) + µ∗ ·

(
1− Φ(−µ∗

σ
)
)

+ a,

where we used
∫

xφ(x) dx = φ(x).
The result follows withb = E(Ṽ |Z), a := K, i.e.µ∗ = µ−K. 2|

Remark 9 (Interpretation): The bias induced by the Monte-Carlo error of the conditional
expectation estimator consists of two parts: The first part in (6) consists of the systematic one
sided bias resulting from the non linearity of themax(a, b + x) function. The second part is a
diffusion of the original payoff function. The Monte-Carlo error smears out the original payoff.
The first part should be attributed to super-optimal exercise due to foresight, the second part to
sub-optimal exercise due to Monte-Carlo uncertainty.

In Figure3 we graph the two parts, namely the functionx 7→ σ · φ( x
σ ) (foresight bias, red)

andx 7→ x · (1− Φ(− x
σ )) (smoothed out payout, blue).

Since the payout with foresight bias (i.e. the sum of the red and the blue curve in Figure3)
is always greater than the payout without foresight bias (the green curve in Figure3), we have
that the first part in (6) is always a dominant part. Usually (as in Figure3) it is much larger
than the negative bias from the diffusive part. See also Figure4.

The smeared out payout (blue curve) lies below the true payout (green curve) since after
having removed the foresight bias part we are left with a suboptimal exercise strategy, where
the suboptimality stems from the disturbance induced by the Monte-Carlo error. This effect
is also visible when removing the foresight bias numerically: for a lower number of path the
price will be more biased low.

We define the first term in (6) as the foresight bias correction.

Definition 10 (Foresight Bias Correction): q
With the notation as in Lemma8 we define

β := σ · φ(−µ−K

σ
)
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Figure 3: Components of a foresight biased payout (1). The figure shows the plot of the foresight bias
part (red) and the smeared out payout (blue) forσ = 0.1 andK = 0 as a function ofµ (the distance
from the exercise boundary).

as theforesight bias correctionof the optimal exercise criteria

max(K, E(Ṽ |Z)),

whereµ := E(Ṽ |Z) andσ2 is the variance of the Monte-Carlo errorε of the estimatorµ. y

We also give a name to the second part in (6).

Definition 11 (Suboptimality Correction): q
With the notation as in Lemma8 we define

γ := (µ−K) ·
(
1− Φ(−µ−K

σ
)
)
−max(0, µ−K)

as thesuboptimal exercise correctionof the optimal exercise criteria

max(K, E(Ṽ |Z)),

whereµ := E(Ṽ |Z) andσ2 is the variance of the Monte-Carlo errorε of the estimatorµ. y

5.4 Analytical Removal of Foresight Bias

We correct for the foresight bias induced for the optimal exercise

max(K, E(Ṽ | Z))

by subtracting the term

βest := σest · φ(
µest −K

σest
) (7)

from the payout on each path, whereµest := Eest(Ṽ | Z) andσest is some estimator for the
Monte-Carlo errorε (see below). With the notation in Section3, we correct for the foresight
bias by modifying the update rule of the backward algorithm towards

Ũi := −βest +

{
Ṽunderl(Ti) if Ṽunderl(Ti) > Eest(Ṽ | Z)
Ũi+1 else.
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Figure 4: Components of a foresight biased payout (2). The two graphs above show the functionx 7→
x · (1−Φ(− x

σ
)). Compared to the true payout it is biased low. The two graphs below show the function

x 7→ σ · φ( x
σ
) + x · (1 − Φ(− x

σ
)). Obviously the termσ · φ( x

σ
) dominates and compared to the true

payout the result is biased high. The figure shows the functions for fromσ = 0.01 (red) to σ = 0.1
(green) toσ = 1.0 (blue).

Note thatβ is stochastic sinceµ := E(Ṽ | Z) andσ are stochastic. They are conditional
means and conditional standard deviations. However we have for a givenZ = z∗ thatβ|{Z =
z∗} is not stochastic. Conditioned on{Z = z∗} the foresight bias is thus removed. Integrating
overz∗ we have that subtractingβ removes the foresight bias globally.

5.5 Analytical Removal of Foresight Bias and Suboptimal Exercise

In addition to a correction for the foresight bias we may also correct for the additional term
in (6) which represents the subobtimality induced by the Monte-Carlo noise. To do so we not
only subtractβest but also subtract

γest := (µest −K) ·
(
1− Φ(−µest −K

σest
)
)
−max(0, µest −K) (8)

from the payout on each path, whereµest := Eest(Ṽ | Z) andσest is some estimator for the
Monte-Carlo errorε (see below). With the notation in Section3, we correct for the foresight
bias by modifying the update rule of the backward algorithm towards

Ũi := −βest − γest +

{
Ṽunderl(Ti) if Ṽunderl(Ti) > Eest(Ṽ | Z)
Ũi+1 else.

Sinceγest is negative (it is the amount lost due to suboptimal exercise due to Monte-Carlo
noise) this correction will increase the price. However The absolute value ofγest is much
smaller thanβest. The effect of this correction is only visible when using a low number of
path.
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We will present numerical results of the full correctionβ + γ in Section6.2.
From now on we will drop the superscript·est andµ, σ andβ denote the corresponding

estimates thereof.

5.6 Implementation of the Analytical Removal of Foresight Bias

The foresight correction (7) is independent from the method used to estimate conditional ex-
pectation, e.g. binning or polynomial regression (aka. Longstaff & Schwartz, [3, 4, 8]). How-
ever some care has to be taken when calculating the estimation ofσ used in foresight correction.

5.6.1 Calculation of the Monte-Carlo error

To calculate the foresight correctionβest we need to estimate the variance of the Monte-Carlo
error ε. In other words we are interested in the standard error of the estimated conditional
expectationEest(Ṽ | Z).

Binning: Let us consider first the simple case of a binning. Then we have

σ2(ω) ≈ 1
nω

· E((Ṽ − µ)2 | Z = Z(ω))

wherenω denotes the number of paths in the binU with Z(ω) ∈ U . And the conditional
varianceE((Ṽ − µ)2 | Z) is estimated by thesamebinning as

E((Ṽ − µ)2 | Z = Z(ω)) =
1

nω

∑
ω̃∈U(ω)

(Ṽ (ω̃)− µ)2.

Regression: For the general case of a regression the standard error is calculated as

σ2 ≈ tr(X · (XT ·X)−1 ·XT) · E((Ṽ − µ)2 | Z),

whereX is the matrix of basis functions used to estimateE(Ṽ | Z). For an in depth discussion
and an proof of this result we refer the reader to the standard literature on multiple regression,
e.g. [5].

The conditional varianceE((Ṽ − µ)2 | Z) of the residuals may be estimated by the same
or a different regression or method. Note however thatE((Ṽ − µ)2 | Z) may become negative
when using a numerical approximation to the true conditional variance. This is frequently the
case when a polynomial regression is used to estimate the conditional expectation of(Ṽ −µ)2.
In our implementation we have fixed this by just taking

max( E((Ṽ − µ)2 | Z) , 0 )

instead. For small number of path the adjusted estimate

σ2 ≈ n

n− q
E((Ṽ − µ)2 | Z)

should be used, wheren is the number of path andq the number of basis functions.
Note also that forσ → 0 we haveβ → 0, which should be used in case of a division by

zero exception.
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5.7 Is the foresight bias negligible?

Let us consider the analytical removal ofβ since this will correspond to the numerical removal
of the foresight bias and the effect of the additional suboptimality correctionγ is only visible
for large Monte-Carlo errors, i.e. small number of paths.

Our formula suggests that the foresight biasβ is of the order of the Monte-Carlo error.
Thus one is tempted to conclude that it is safe to neglect the foresight bias. Indeed, in our test
case of a Bermudan option with three exercises (see Section6.3.1) we found that the foresight
bias is within one standard deviation of the Monte-Carlo price.

5.7.1 Aggregating Foresight Biased Options

However, summing up different options - each with a foresight bias and a Monte-Carlo error
- may change the picture. If two options differ in strike or maturities their Monte-Carlo er-
rors may become more an more independent.7 Consider a book ofn options (compound or
Bermudan). If then options have independent Monte-Carlo errors with standard deviationσ
the Monte-Carlo error for the portfolio will be

√
n ·σ. But since the foresight bias is a system-

atic error it will grow linearly inn, i.e. if then options have a foresight biasβ the book will
exhibit a foresight bias ofn · β. Assuming that for a family of optionsβ andσ are of the same
size we could say that: only if the Monte-Carlo errors of the single product prices are perfectly
correlated we would have that the ratio of foresight bias to Monte-Carlo errorβ

σ of a portfolio
does not grow with the portfolio size.

This is also obvious from the interpretation of the foresight bias as an option on the (indi-
vidual) Monte-Carlo error. The book will containn such options.8 In the end we have that the
foresight bias may likely become significant.9

For a Bermudan option with many exercise dates the situation is even worse. Here we
have a Bermudan option on the foresight biases induced in each maturity. In Section6.3.2
we calculated the foresight bias for an option with nine exercise dates and compare it to three
options each with three of the nine exercise dates. While the option with three exercises showed
foresight biases of0.4 to 0.5 times the Monte-Carlo error the option with all nine exercises
showed a foresight bias of1.3 times the Monte-Carlo error. The calculation in Section6.3.2
suggest that for a Bermudan option the Monte-Carlo errors average, but the foresight biases
add.

The two effects become visible in our numerical experiments, see Table5.

5.7.2 Parallelization of Pricing with Foresight Bias

Not removing the foresight bias has a severe influence on the parallelization of pricing. For
European options Monte-Carlo has the pleasing property that averagingn results fromn inde-
pendent Monte-Carlo simulations reduces the pricing error by a factor of1√

n
. This is also true

for the Monte-Carlo error of a Bermudan, but not for its foresight bias. Aggregating Monte-
Carlo prices will increase the size of the foresight bias relative to the Monte-Carlo error thus
making the foresight bias a dominant effect.

7 As example consider the two payoutsmin(max(S(T ), a1), b1) andmin(max(S(T ), a2), b2) (i.e.S(T ) capped
and floored). If(a1, b1) and (a2, b2) are disjoint a sampling ofS(T ) will (in general) generate independent
Monte-Carlo errors for the two payouts.

8 Of course foresight bias may cancel if one averages short options with long options.
9 Our test case in Section6.3.1exhibited a foresight bias0.5 of the Monte-Carlo error. Pricing a book of16 options

may result in a foresight bias around2 standard deviations (the95% quantile).
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6 Numerical Results

We will present numerical results for different experiments:

• We show how the foresight bias becomes significant if independent Monte-Carlo simu-
lations are aggregated and how the numerical and analytical method correct for it.

• We show how the foresight bias relates to the Monte-Carlo error for increasing number
of paths.

• We show that the ratio of foresight bias to Monte-Carlo error increases for options with
more exercise dates or a portfolio of options.

6.1 Benchmark Model

Our Benchmark model is a simple Black-Scholes model for an assetS whereS follows

dS = µSdt + σSdW

with S(0) = 1.0, σ = 20%, and assuming the risk free assetdB = rBdt with r = 5%.

6.2 Aggregation of Monte-Carlo Prices

We setupm independent Monte-Carlo simulation withn/m paths and calculate the average
price of a Bermudan option price over the set of Monte-Carlo simulations. We varym from
m = 1, i.e. a single Monte-Carlo simulation with a huge number of paths, tom = 2048,
i.e. many small Monte-Carlo simulations.

The aggregated prices have similar Monte-Carlo errors and for an European option the
different methods should result in (almost) identical prices. For a Bermudan option the differ-
ent methods of aggregation are not equivalent. The foresight bias is a systematic error being
O(

√
m/n).

Figure5 and6 show that the numerical removal of the foresight bias and our analytical
removal of the foresight bias give very similar results. The Figure shows the price resulting
from the aggregation ofm Monte-Carlo simulations, each such that the total number of paths
is independent ofm. Form large a single Monte-Carlo simulation has a low number of paths,
thus a larger foresight-bias. This parallelization has a huge impact on the price accuracy if
foresight bias is not removed. If foresight bias is removed the price will slowly become lower.
This is due to the fact that the optimal exercise is smeared out by the diffusive term in (6).

Our benchmark product is a simple Bermudan option onS where the holder has the right
to receive once

Ni · (S(Ti)−Ki) in Ti

or nothing if none of the options is exercised. The calculation shown are for three exercise
dates with

Bermudan option with three exercises
Exercise dateTi 1.00 2.00 3.00
NotionalNi 1.00 1.00 1.00
StrikeKi 0.95 1.00 1.10

Table 1: Specification of the product used in Figure5 and6.

c©2005 Christian Fries
http://www.christian-fries.de/finmath/foresightbias

16 Version 1.1.4 (20051128)

http://www.christian-fries.de/finmath/foresightbias


Foresight Bias and Suboptimality Correction Christian P. Fries

Option price by aggregation (204800 paths total, binning)

Foresight not removed Foresight removed numerically
Foresight removed analytically
Foresight and suboptimality removed analytically

1 2 3 4 5 10 20 30 100 200 1000 1000010000

Number of independent calculations aggregated

16,00%

17,00%

18,00%

19,00%

20,00%

21,00%

22,00%

P
ric

e

Aggregated Price
Number of Number of Without Numerical Analytical Analytical

Independent Paths per Foresight Foresight Foresight Foresight and
Simulations Simulation Removal Removal only Suboptimality

1 204800 17,328% 17,295% 17,302% 17,308%
2 102400 17,330% 17,303% 17,262% 17,274%
4 51200 17,323% 17,234% 17,187% 17,214%
8 25600 17,417% 17,226% 17,182% 17,224%
16 12800 17,510% 17,166% 17,059% 17,145%
32 6400 17,689% 17,061% 16,918% 17,060%
64 3200 17,961% 16,826% 16,671% 16,911%
128 1600 18,450% 16,692% 16,314% 16,704%
256 800 19,353% 16,541% 16,066% 16,660%
512 400 20,481% 16,259% 15,659% 16,503%
1024 200 22,287% 16,083% 15,908% 16,944%

Figure 5: Aggregation of Monte-Carlo Prices with or without Removal of Foresight. The conditional
expectation is estimated by a binning with 100 bins. Note that since we use 100 bins the last scenario
(using 200 paths per individual Monte Carlo simulations) calculated the conditional expectation using
two paths. Thus we almost have a perfect foresight. Correcting the foresight by estimating the Monte
Carlo error from the two paths gives very good results in average. Note that a numerical removal of the
foresight bias may still result a (small) bias high since it is not guaranteed that the two simulation used
are independent, especially when aggregating many subsequent runs.
For small number of paths the additional correction for the suboptimal exercise (green curve) gives even
better results.
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Option price by aggregation (204800 paths total, polynomial regression)

Foresight not removed Foresight removed numerically
Foresight removed analytically
Foresight and suboptimality removed analytically

1 2 3 4 5 10 20 30 100 200 1000 1000010000

Number of independent calculations aggregated

16,50%

17,00%

17,50%

18,00%

18,50%

19,00%

19,50%

P
ric

e

Aggregated Price
Number of Number of Without Numerical Analytical Analytical

Independent Paths per Foresight Foresight Foresight Foresight and
Simulations Simulation Removal Removal only Suboptimality

1 204800 17,240% 17,264% 17,234% 17,235%
2 102400 17,314% 17,303% 17,304% 17,306%
4 51200 17,277% 17,273% 17,247% 17,253%
8 25600 17,307% 17,291% 17,247% 17,256%
16 12800 17,384% 17,328% 17,323% 17,333%
32 6400 17,363% 17,238% 17,272% 17,288%
64 3200 17,430% 17,280% 17,246% 17,279%
128 1600 17,487% 17,191% 17,195% 17,248%
256 800 17,613% 17,103% 17,148% 17,227%
512 400 17,895% 17,082% 17,083% 17,222%
1024 200 18,286% 16,893% 16,939% 17,181%
2048 100 18,781% 16,642% 16,726% 17,090%
4096 50 19,744% 16,440% 16,660% 17,207%

Figure 6: Aggregation of Monte-Carlo Prices with or without Removal of Foresight. The conditional
expectation is estimated by a regression using a polynomial of order 5.
For small number of paths the additional correction for the suboptimal exercise (green curve) gives even
better results.
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6.3 Relation of Foresight Bias to Monte-Carlo Error

We calculate Monte-Carlo prices for an Bermudan option with three exercise dates. Foresight
bias in either not removed, removed numerically or removed analytically. The pricing is per-
formed with different number of paths. The pricing is repeated 15000 times with different sets
of random numbers (seeds). We graph the distribution of Monte-Carlo prices and access the
Monte-Carlo error. In the following examples we consider only the foresight bias correction
β.

6.3.1 Example 1: Bermudan Option with three Exercise Dates

We consider the Bermudan option with three exercises as given in table2.

Product B1: Option with three exercises
Exercise dateTi 1.00 2.00 3.00
NotionalNi 1.00 1.00 1.00
StrikeKi 1.00 1.06 1.12

Table 2: Product B1: Option with nine exercises.

Monte Carlo prices of Bermudan option (1000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically

0,145 0,150 0,155 0,160 0,165

Price

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

0,055

0,060

F
re

qu
en

cy

Without f.b. removal:   15,800%	+/-   0,738%
Numeric f.b. removal:   15,338%	+/-   0,741%	(f. bias =   0,463%)
Analytic f.b. removal:   15,288%	+/-   0,743%	(f. bias =   0,513%)

Monte Carlo prices of Bermudan option (2000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically

0,145 0,150 0,155 0,160 0,165

Price

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

0,055

0,060

F
re

qu
en

cy

Without f.b. removal:   15,655%	+/-   0,527%
Numeric f.b. removal:   15,363%	+/-   0,526%	(f. bias =   0,292%)
Analytic f.b. removal:   15,336%	+/-   0,530%	(f. bias =   0,319%)

Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically

0,145 0,150 0,155 0,160 0,165

Price

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

0,055

0,060

F
re

qu
en

cy

Without f.b. removal:   15,551%	+/-   0,336%
Numeric f.b. removal:   15,388%	+/-   0,334%	(f. bias =   0,163%)
Analytic f.b. removal:   15,379%	+/-   0,336%	(f. bias =   0,172%)

Monte Carlo prices of Bermudan option (10000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically

0,145 0,150 0,155 0,160 0,165

Price

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

0,055

0,060

F
re

qu
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cy

Without f.b. removal:   15,490%	+/-   0,239%
Numeric f.b. removal:   15,389%	+/-   0,237%	(f. bias =   0,102%)
Analytic f.b. removal:   15,385%	+/-   0,238%	(f. bias =   0,105%)

Figure 7: Distribution of Monte-Carlo prices without (red) and with (blue and green) removal of foresight
bias for an Bermudan option with three exercise dates. The blue distribution is almost hidden behind the
green distribution since the analytical and numerical removal give very similar results.
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6.3.2 Example 2: Bermudan Option with nine Exercise Dates

We calculate Monte-Carlo prices for an Bermudan option with nine exercise dates. Foresight
bias in either not removed, numerically removed or analytically removed. The pricing is per-
formed with different number of paths. The pricing is repeated 20000 times with different sets
of random numbers (seeds) to access the Monte-Carlo error. The results are shown in Figure8
and10.

We consider the Bermudan option with nine exercises as given in table3.

Product B4: Option with nine exercises
Exercise dateTi 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
NotionalNi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
StrikeKi 1.00 1.06 1.12 1.19 1.26 1.34 1.42 1.50 1.59

Table 3: Product B4: Option with nine exercises.

Monte Carlo prices of Bermudan option (1000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically

0,215 0,220 0,225 0,230 0,235 0,240 0,245 0,250
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Without f.b. removal:   24,811%	+/-   1,357%
Numeric f.b. removal:   22,993%	+/-   1,287%	(f. bias =   1,818%)
Analytic f.b. removal:   22,416%	+/-   1,296%	(f. bias =   2,395%)

Monte Carlo prices of Bermudan option (2000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically

0,215 0,220 0,225 0,230 0,235 0,240 0,245 0,250

Price
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0,060

F
re

qu
en

cy
Without f.b. removal:   24,260%	+/-   0,964%

Numeric f.b. removal:   23,114%	+/-   0,915%	(f. bias =   1,147%)
Analytic f.b. removal:   22,807%	+/-   0,918%	(f. bias =   1,453%)

Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically

0,215 0,220 0,225 0,230 0,235 0,240 0,245 0,250

Price

0,000
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0,040

0,045

0,050
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Without f.b. removal:   23,802%	+/-   0,606%
Numeric f.b. removal:   23,199%	+/-   0,578%	(f. bias =   0,603%)
Analytic f.b. removal:   23,074%	+/-   0,578%	(f. bias =   0,728%)

Monte Carlo prices of Bermudan option (10000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically

0,215 0,220 0,225 0,230 0,235 0,240 0,245 0,250

Price
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Without f.b. removal:   23,607%	+/-   0,425%
Numeric f.b. removal:   23,251%	+/-   0,408%	(f. bias =   0,357%)
Analytic f.b. removal:   23,191%	+/-   0,406%	(f. bias =   0,416%)

Figure 8: Distribution of Monte-Carlo prices without (red) and with (blue and green) removal of foresight
bias for an Bermudan option with nine exercise dates.
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Convergence of Monte Carlo price
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Figure 9: Product B1 (Bermudan with nine exercise dates): Convergence of Monte-Carlo prices without
foresight removal (red) and with analytic foresight removal (green) and Monte-Carlo error (blue corridor
= one standard deviation).
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Figure 10: Product B4 (Bermudan with nine exercise dates): Convergence of Monte-Carlo prices without
foresight removal (red) and with analytic foresight removal (green) and Monte-Carlo error (blue corridor
= one standard deviation).

c©2005 Christian Fries
http://www.christian-fries.de/finmath/foresightbias

21 Version 1.1.4 (20051128)

http://www.christian-fries.de/finmath/foresightbias


Foresight Bias and Suboptimality Correction Christian P. Fries

6.3.3 Example 3: A Portfolio of Bermudan Options

In addition to the products B1 and B4 we consider the two Bermudan option with three exer-
cises as given in Table4. Note that the product B4 is just a Bermudan on B1, B2, B3.

Product B2: Option with three exercises
Exercise dateTi 4.00 5.00 6.00
NotionalNi 1.00 1.00 1.00
StrikeKi 1.19 1.26 1.34

Product B3: Option with three exercises
Exercise dateTi 7.00 8.00 9.00
NotionalNi 1.00 1.00 1.00
StrikeKi 1.42 1.50 1.59

Table 4: Product B2 and B3: Option with nine exercises.

We calculate foresight bias (β) and Monte Carlo error (σ) for the prices of the Bermudan
options B1, B2, B3 and B4 as well as for the two portfolios{ 1

3 ·B1, 1
3 ·B2, 1

3 ·B3} { 1
2 ·B2, 1

2 ·B3}.
Since the Bermudan option B4 is just the union of the underlyings of B1, B2 and B3 we denote
it by {B1∨ B2∨ B3}.

The results are given in Table5. Each pricing used 5000 paths an was repeated 20000 times
with different sets of random numbers.

Option / Portfolio foresight biasβ Monte Carlo errorσ Ratio β
σ

B1 0.172 0.336 0.51
B2 0.198 0.491 0.40
B3 0.271 0.656 0.41

B4 = {B1∨ B2∨ B3} 0.728 0.578 1.26

{ 1
2 · B2 + 1

2 · B3} 0.234 0.518 0.45
{ 1

3 · B1 + 1
3 · B2 + 1

3 · B3} 0.214 0.428 0.50

Theoretical values assuming perfectly uncorrelated Monte-Carlo errors
{ 1

2 · B2 + 1
2 · B3} 0.235 0.410 0.57

{ 1
3 · B1 + 1

3 · B2 + 1
3 · B3} 0.214 0.295 0.72

Theoretical values assuming perfectly correlated Monte-Carlo errors
{ 1

2 · B2 + 1
2 · B3} 0.235 0.574 0.41

{ 1
3 · B1 + 1

3 · B2 + 1
3 · B3} 0.214 0.496 0.43

Table 5: Comparrison of foresight bias (β) and Monte Carlo error (σ) for single options and portfolios.

We see in Table5 the behavior which we have discussed qualitatively in Section5.7: The
foresight bias of a portfolio is just the sum of the foresight bias of the foresight biases of its
components. Compared to the Monte-Carlo error of the portfolio the foresight bias ratio grows.
For example we have

β 1
2 ·B2+ 1

2 ·B3 = 0.234 ≈ 0.235 =
1
2
· βB2 +

1
2
· βB3

σ 1
2 ·B2+ 1

2 ·B3 = 0.518 < 0.574 =
1
2
· σB2 +

1
2
· σB3

and likewise

β 1
3 ·B1+ 1

3 ·B2+ 1
3 ·B3 = 0.214 ≈ 0.214 =

1
3
· βB1 +

1
3
· βB2 +

1
3
· βB3

σ 1
3 ·B1+ 1

3 ·B2+ 1
3 ·B3 = 0.428 < 0.494 =

1
3
· σB1 +

1
3
· σB2 +

1
3
· σB3.
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So for both cases we have that the ratio of foresight bias to Monte-Carlo error increases:

β 1
2 ·B2+ 1

2 ·B3

σ 1
2 ·B2+ 1

2 ·B3
= 0.45 > 0.41 =

1
2 · βB2 + 1

2 · βB3
1
2 · σB2 + 1

2 · σB3

β 1
3 ·B1+ 1

3 ·B2+ 1
3 ·B3

σ 1
3 ·B1+ 1

3 ·B2+ 1
3 ·B3

= 0.50 > 0.43 =
1
3 · βB1 + 1

3 · βB2 + 1
3 · βB3

1
3 · σB1 + 1

3 · σB2 + 1
3 · σB3

.

Thus the relative foresight bias increases.
For the Bermudan option B4= {B1 ∨ B2 ∨ B3} having nine exercise dates the ratioβ

σ
increases to 1.26, so the ratio almost triples. Here we have that the foresight biases almost add,
while the Monte-Carlo errors are just averaged. See Figure11.
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Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically

0,145 0,150 0,155 0,160 0,165
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Without f.b. removal:   15,551%	+/-   0,336%
Numeric f.b. removal:   15,388%	+/-   0,334%	(f. bias =   0,163%)
Analytic f.b. removal:   15,379%	+/-   0,336%	(f. bias =   0,172%)

(a) Product B1: Thee exercises{1.0, 2.0, 3.0}

Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically
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Without f.b. removal:   20,042%	+/-   0,494%
Numeric f.b. removal:   19,821%	+/-   0,497%	(f. bias =   0,221%)
Analytic f.b. removal:   19,844%	+/-   0,491%	(f. bias =   0,198%)

(b) Product B2: Thee exercises{4.0, 5.0, 6.0}

Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically

0,215 0,220 0,225 0,230 0,235 0,240 0,245 0,250
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Without f.b. removal:   23,449%	+/-   0,661%
Numeric f.b. removal:   23,159%	+/-   0,666%	(f. bias =   0,290%)
Analytic f.b. removal:   23,178%	+/-   0,656%	(f. bias =   0,271%)

(c) Product B3: Thee exercises{7.0, 8.0, 9.0}

Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically

0,215 0,220 0,225 0,230 0,235 0,240 0,245 0,250

Price

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

0,055

0,060
F

re
qu

en
cy

Without f.b. removal:   23,802%	+/-   0,606%
Numeric f.b. removal:   23,199%	+/-   0,578%	(f. bias =   0,603%)
Analytic f.b. removal:   23,074%	+/-   0,578%	(f. bias =   0,728%)

(d) Product B4: All nine exercises{B1∨ B2∨ B3}

Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically

0,195 0,200 0,205 0,210 0,215 0,220 0,225 0,230
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Without f.b. removal:   21,736%	+/-   0,529%
Numeric f.b. removal:   21,482%	+/-   0,531%	(f. bias =   0,254%)
Analytic f.b. removal:   21,502%	+/-   0,518%	(f. bias =   0,234%)

(e) Protfolio 1
2
· B2 + 1

2
· B3

Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns)

Foresight not removed Foresight removed numerically
Foresight removed analytically
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Without f.b. removal:   19,678%	+/-   0,437%
Numeric f.b. removal:   19,454%	+/-   0,435%	(f. bias =   0,224%)
Analytic f.b. removal:   19,464%	+/-   0,428%	(f. bias =   0,214%)

(f) Protfolio 1
3
· B1 + 1

3
· B2 + 1

3
· B3

Figure 11: Distribution of Monte-Carlo prices without (red) and with (blue and green) removal of fore-
sight bias for B1, B2, B3, the Bermudan B4 and the portfolios{B2, B3} and{B1, B2, B3}. Note how the
foresight bias is increased for the Bermudan in11(d).
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7 Conclusion

The analytical foresight correction gives almost identical result to a numerical foresight cor-
rection even for small number of paths. Using the analytical foresight corrections allows to
keep the implementation as simple and efficient as without foresight correction. The foresight
correctionβ may also be used as a safe guard indicating whether or not you are allowed to
neglect foresight bias.

Our approach is independent of the method used to estimate the conditional expectation
and easy to implement. We provide a closed formula for the foresight biasβ when a multiple
linear regression is used to estimate the conditional expectations (aka. Longstaff-Schwartz).

Our numerical results indicate that foresight bias should not be neglected, at least for
Bermudan option with many exercise dates or portfolios of Bermudan options.

The additional correction for the suboptimal exercise (γ) improves the pricing when aggre-
gating Monte-Carlo simulations with small number of path.

Since our approach consisted of the analytic calculation of the error induced by the addi-
tional Monte-Carlo error variance it is universal in the sense that it is independet of the model
and the of the product considered.

Future work should run tests with high dimensional models like the LIBOR Market Model.
Here we expect the effects to be even greater due to higher decorrelation of Monte-Carlo error.
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List of Symbols

Symbol Meaning

Ṽ The random variable representing the value received upon non-exercise (con-
tinuation value) and for which a conditional expectation has to be estimated
(i.e. one of theŨi defined in the backward algorithm).

Z The random variable representing the value on which the expectation ofṼ
is conditioned (the predictor). In the pricing of Bermudan stock options this
might be the stock (Z = S) or some intrinsic value (Z = max(S −K, 0)).

Y The basis functions (Y = (Y1, . . . , Yq) used to approximate the functional de-
pendancez 7→ E(Ṽ | Z = z). For a polynomial regression the basis functions
are often monomials inZ. In the pricing of Bermudan stock options this might
beY = (1, Z, Z2, . . . , Zq−1).

X The matrix of Monte Carlo samples of the regression basis functionsY used to
estimateE(Ṽ | Z). Each row represent the values of the basis functions on the
corresponding Monte Carlo path.

q Number of basis functions.

n Number of Monte Carlo paths.

ε Monte Carlo error of the conditional expectation estimator ofṼ .

σ Standard deviation of the Monte Carlo errorε.

µ−K Distance ofE(Ṽ | Z) from the exercise boundaryK.

φ The density of the standard normal distribution.

Φ The cumulative distribution function of the standard normal distribution.

β The foresight error correction.
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