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Abstract

In this paper we investigate the so calledesight biasthat may appear in the Monte-Carlo
pricing of Bermudan and compound options if the exercise criteria is calculated by the same
Monte-Carlo simulation as the exercise values. The standard approach to remove the foresight
bias is to use two independent Monte-Carlo simulations: One simulation is used to estimate
the exercise criteria (as a function of some state variable), the other is used to calculate the
exercise price based on this exercise criteria. We shall call thisuheerical removal of the
foresight bias

In this paper we give an exact definition of #eesight biasn closed form and show how
to apply an analytical correction for the foresight bias.

Our numerical results show that the analytical removal of the foresight bias gives similar
results as the standard numerical removal of the foresight bias. The analytical correction allows
for a simpler coding and faster pricing, compared to a numerical removal of the foresight bias.

Our analysis may also be used as an indication of when to neglect the foresight bias removal
altogether. While this is sometimes possible, neglecting foresight bias will break the possibility
of parallelization of Monte-Carlo simulation and may be inadequate for Bermudan options
with many exercise dates (for which the foresight bias may become a Bermudan option on the
Monte-Carlo error) or for portfolios of Bermudan options (for which the foresight bias grows
faster than the Monte-Carlo error).

In addition to an analytical removal of the foresight bias we derive an analytical correction
for the suboptimal exercise due to the uncertainty induced by the Monte-Carlo error. The com-
bined correction for foresight bias (biased high) and suboptimal exercise (biased low) removed
the systematic bias even for Monte-Carlo simulations with very small number of paths.
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1 Introduction

Estimating conditional expectation in a Monte-Carlo simulation is a frequent challenge in the
pricing of complex derivatives, e.g. options on options or Bermudan options. Here the payoff
is given by the optimal choice between an underlyiagd the value of a future option, the
latter given by a conditional expectation.

The problem of pricing Bermudan or American style options by Monte Carlo is tackled
by numerous approaches, like binning (aka. state space partitioning), parameter optimization
methods, regression methods, dual methods (optimal stopping), se2 é,d7,[9] and refer-
ences there in.

Here we concentrate on those methods that rely on an estimator for the conditional expec-
tation. If the conditional expectation or a suitable approximation for it is known, the optimal
exercise strategy (i.e. the optimal stopping time) may be calculated by the backward algorithm.
Then the price of the Bermudan option is the (unconditional) expectation of the values under
optimal exercise.

If however the conditional expectation estimator (hence the optimal exercise strategy) and
the pricing of the Bermudan share the same Monte-Carlo simulation, a systematic positive
bias will occur: the foresight bias. The exercise strategy may be super optimal by exercising
optimal on the common Monte-Carlo error. In other words:

The foresight bias is the value of the option on the Monte Carlo error.

Itis straight forward to eliminate the foresight bias by introducing two independent Monte-
Carlo simulationg. However this makes the pricing slow and the implementation a bit cum-
bersome. We show that a simple calculation allows us to

a) give a very exact estimate of the foresight bias and

b) apply an correction that removes the foresight bias (without the need of a second inde-
pendent Monte Carlo simulation).

In fact, we simple calculate the price of the option on the Monte Carlo error. This allows us to
analytically correct the foresight bias making pricing faster and coding leaner.

1.1 Plan of the Paper

We start with a small introduction to the pricing of Bermudan options in Monte Carlo. For a
more detailed introduction to the pricing of Bermudan options in Monte Carlo and a review
of the literature see e.g6,[9] and references therein. In Secti@rwe give a fairly general
definition of an Bermudan option and define the optimal exercise time and the optimal exercise
value. In SectiorB we present the well known backward algorithm by which the optimal
exercise value and thus the Bermudan option value may be calculated. The main ingredient
to the backward algorithm is the exercise criteria and here an estimator for the conditional
expectation. The estimation of conditional expectation in Monte-Carlo is shortly reviewed in
Section4.

In Section5 we will then present an estimator for theresight biasand discuss the (ana-
lytic) removal of the foresight bias by a small additional term in the backward algorithm. We
conclude with some numerical results in Section

3 We use a rather general definition of Bermudan option, where the underlying may be different at each exercise
date and where it may be a constant (like a strike for a compound option) or stochastic.

4 The exercise criteria will still be influence by the Monte Carlo error one of the simulations, but exercising will give
the (independent) Monte Carlo error of the other simulation.
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2 Bermudan Options: Notation

We now give a fairly general definition of an Bermudan option and fix notation{ Tgt—; .,
denote a set of exercise dates gl e ; }i=1,....» & cOrresponding set of underlyings. The
Bermudan option is the right to receive at one and only one fihtbe corresponding under-
lying Vinder,: (With i = 1,..., n) or receive nothing.

At each exercise daté;, the optimal strategy compares the value of the product upon
exercise with the value of the product upon non-exercise and chooses the larger one. Thus the
value of the Bermudan is given recursively

Vberm(Ti7 e aTn; TL) = max (‘/berm(T’i-‘rla cee 7Tn; Tz) 3 Vunderl,i (TL))1 (1)

whereVierm (Tn; Tr) = 0 and Vyngen,s(1;) denotes the value of the underlyif@nge. ; at
exercise datf;.

2.1 Relative Prices

Let N(t) denote the time value of a chosen Numéraire afil” the corresponding pricing
measure, sed]. Since the conditional expectation (w.r.t. the pricing measure) of a Numéraire
relative price is a Numéraire relative price the presentation will be simplified by considering
the Numéraire relative quantities. We will then define:

nd Vunderl,i (Tj)

Vb rm(Ti7 e 7T7L; T)
Vunderl,i(Tj) = N(T) = - 4
J

und Vberm,i (T]) = N(T) ,
J

thus we have
Vbcrm,n =0,
Voerm,i+1(T;) = EQ" (Voerm,i+1(Tix1) | Fr,),
Voerm,i(T;) = max (Voerm,i+1(T3) , Vanderi (T3)),
where{F;} denotes the filtration. The relative prices are marked by a tilde. The Bermudan

pricing consists of finding the relative value of the longest Bermudan, 1 as seen il
(today). We write shortlWherm (7o) := Voerm.1(Z0)-

2.2 Bermudan Option as Optimal Exercise Problem

A Bermudan option consists of the right to receive one (and only one) of the underlyings

Vinder1,; at the corresponding exercise ddie The recursive definitionlj represents the

optimal exercise strategy in each exercise time. We formalize this optimal exercise strategy:
For a given patlu € Q let

T(w) = Inin{:ri : Vbcrm,iJrl(,-Tiaw) < Vundcrl,i(Ti;w)}-

The definitions ofl" gives a description of the exercise strate@yw) is the optimal exercise
time on a given pathv. It should be noted thetl” < 7).} C Fr, (i.e. T is a stopping time).

2.3 Bermudan Option Value as single (unconditioned) Expectation:
The Optimal Exercise Value

With the definition of the optimal exercise stratehyt is possible to define a random variable
which allows to express the Bermudan option value as a single (unconditioned) expectation.
With

U(TZ) = ~underl,i(Ti) 1=1,...,n
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denoting the relative price of thieth underlying upon its exercise dafe we have for the
Bermudan value 3 }
Voerm(To) = EQ(U(T) | Fr,).

The random variabléf(T) may be calculated directly using tBackward AlgorithmWe will
consider this in the next section and conclude by giii{g’) a name:

Definition 1 (Option Value upon Optimal Exercise): 1
Let U be the stochastic process who'’s tithgalue U (t) is the (Numéraire relative) option
value received upon exercisefin Let T' be the optimal exercise strategy. Then the random
variableU (T"), where } 3
UT)w] :=U(T(w),w),

is the (Numeraire relativejption value received upon optimal exerci3ée (Numéraire rela-
tive) Bermudan option value is given 82 (U(T) | Fr,). 2

Thus the value ot (T4, - - ., T,,) may be expressed through a single expectation con-

ditioned toT, and does not need any calculation of a conditional expectation at later times,
we have the optimal exercise dé&téw) for any pathw.

3 The Backward Algorithm

The random variabl& (T') may be derived in a Monte-Carlo simulation through the Backward
algorithm,giventhe exercise criterial], i.e. the conditional expectation. The algorithm con-
sists of the application of the recursive definition of the Bermudan valug) iwith a slight
modification. Let:

Induction start:

0n+1 =0
Inductionstep i+1—ifori=n,...,1:
0 - Ui if Vinderi(T3) < EQ(Ui 1| Fr,)
' Vunderl,i (T‘z) else.

From the tower law we have by inducti@®? (U; 1| Fr,) = E@(Voerm.ir1(T3)|Fr,) and
thus
‘/berm(Tlv- "aTn7TO) = EQ(U1|‘FT0) (2)

andU, = U(T') with the notation from the previous section.

The recursive definition df; differs from the recursive definition d?berm’i(Ti). We have

0. — U1 if Vinderli(T3) < EQ(Uis1|Fr,)
' Vunderl,i(Ti) else,

and

Toorm i(T2) = EQ(Voerm,it1(Tir1)|Fr,) i Vindeni(T3) < EQUisa| Fr,)

berm i1 Vunderl,i(Ti) else.
This is a subtle but crucial difference. While both definitions give the Bermudan option value
(through application of3)), we have that the definition éf; requires the conditional expecta-

tion operator only to calculate the exercise criteria.
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4 Conditional Expectation Estimators

We concentrate on the problem of calculating the conditional expectation of a Numéraire rela-
tive value process;.

4.1 Conditional Expectation as Functional Dependence

Let us reconsider the calculation of the
conditional expectation through brute force
re-simulation as depicted in Figude On
each path of the original simulation a re-
simulation has to be created. These re-
0 I Mt: simulations differ in their initial conditions

(e.g. the valueS(Ty) in a simulation of a
stock price following a Black-Scholes Mod-
ell, or the valued.;(T}) in a simulation of
forward rates following a LIBOR Market
Model). These initial conditions arér,
Figure 1: Brute force calculation of the conditional measurable random. yarlalbes (knoyvn z.as of
expectation by pathwise resimulation — not feasibld 1)- Thus the conditional expectation is a

since the number of paths grows exponentially witfinction of these initial conditions (and pos-
the number of exercise dates. sibly other model parameters known).

If it is known that the conditional expecta-
tion is a function of aF, measurable random variabfe(we assume here that : Q — R?

with somed) we have
v (V(T3) ov [(V(T)
B¢ (N(T2) | ]:T1> —F (N(T2) | Z) ' )

W(t,w) A

4.2 Perfect Foresight

In a path simulation the approximation B (Xf%:Trz% \ Z) will be given by averaging over all

paths for whichZ attains the same value. However in general the situation will be such that
there are no two or more paths for whighattains the same value - apart from the construction
of the unfeasible resimulation. In other word one would use the crude approximation

V(Tg) - V(TQ, w)
Eh <N<T2> | Z) Y~ N7

This approximation is called perfect foresight.

4.3 Binning

An improvement is given by bBinning where the averaging will be done over those paths for
which Z lies in a neighborhoodofn). If the quantities are continuous we have:

= (e 12) 15 (a1 <),

whereU.(Z(w)) :={z | [|Z(w) — z|| < €}
Instead of defining a bil/.(Z(w)) for each pathw it is more efficient to start with a
partition of Z(2) into a finite set of disjoint bind/; C Z(92). The approximation of the

conditional expectation
V(1)
Q
8 (g | 4)
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will then be given by

H; := E° <x((%)) | Z € Ui>

whereU, denote the set witlt (w) € U;.

Example: Pricing of a simple Bermudan Option on a Stock

We illustrate the method in a simple Black-Scholes model for a stockn 77 we wish to
evaluate the option of receiviny; - (S(T1) — K4 ) in T} or to receiveN - max(S(Tz) — K3, 0)

at later timel, (where Ny, N> (hotional), K, K> (strike) are given). The optimal exercise in
T, compares the exercise value with the value offtheption, i.e.

oo (NS K50 ),

From the model specification, e.g. here a Black-Scholes model
dS(t) =r-S(t)dt + aS(t)dWe(t),  N(t) = exp(rt)

it is obvious that the price of th&, option seen il is a given functionS(77) and the given
model parameters (o). Thus it is sufficient to calculate

NQ . HlaX(S(TQ) — KQ,O)

In this example the functional dependence is known analytically. It is given by the Black-
Scholes formula. Nevertheless we use the binning to calculate an approximation to the condi-
tional expectation. If we plot

N2 . maX(S(Tg,wi) — K270)
N(T»)

as a function of S(T1,w;)

——
Continuation Value Underlying

we obtain the scatter plot in Figu2 For a givenS(77) none or very few values of the
continuation valueexists. An estimate is not possible or exhibits a foresight bias. For an
interval[S; — €, S1 + €] with sufficiently larges we have enough values to calculate an estimate

of
EQ (N2 . max(S(Tg) - K270)
N(T»)
which in turn may be used as estimate of

Ny -max(S(Tz) — K2,0)
e (B

| S(Tl) S [Sl — €, S +€])

| S(Ty) = 51) .

4.4 Regression Methods - Least Square Approximation of the Condi-
tional Expectation

Let us start with a fairly general definition of theast square approximatioof the conditional
expectation of random variablé.

Definition 2 (Least Square Approximation of the Conditional Expectation): 1
Let (2, F,Q, {F:}) be a filtered probability space aftla Fr, measurable random variable
defined as the conditional expectation of

V=E%U | Fn,),
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Continuation versus Exercise Value (pathwise)

1,2 1

1,0 1

0,8 1

0,5 1

Value upon Hold

0,2 4

0,0 &
-0,2

05 08
Value upon Exercise

Figure 2: The value realized on a path upon non exercise as a function of the value realized upon exercise.

whereU is at leastF measurable. Furthermore [Bt:= (Y7, ...,Y,) be a givenFr, measur-
able random variable anfl : R? x R? a given function. Lef)* = {wy,...wy} a drawing
from 2 (e.g. a Monte-Carlo simulation correspondingdpanda™® := (a1, .. ., aq) such that

U = f(Y, @) |y = min [[U = f(Y, @)L,

wherel|U7 — £(Y,a*)[12, o) = 30 (U(ws) — F(¥ (), %)) We set
j=1

VIS = f(v,a").

The random variabl& ™S is F, measurable. It is defined ovBrand aleast squarepproxi-
mation ofV on Q*. 3

The Method of Longstaff and Schwattases a functiorf with ¢ = p and

P

Fy, - ypraa, .o, ) :=Zai-yi,

=1
such thav* may be calculated analytically as a linear regression.

Lemma 3 (Linear Regression): LetQ* = {w,...,w,} be agiven sample spadé,: Q* —
RandY := (Y3,...,Y,) : Q* — RP given random variables. Furthermore let

Fy, - Yp iy, ) 1= Zaiyi.
Then we have for ang* with XTXa* = XTv

IV = (Y, a%)|| o) = min [V = f(V, )|, 00),

where
Yl (wl) ce Yp(wl) V(wl)
X = , V=
Yi(wn) ... Yy(wp) V(wn)
If (XTX)~! exists them* := (XTX)71 X T,
5 See B].
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Definition 4 (Basis Functions): 1
The random variable¥], . . ., Y, of Lemmag3 are calledBasis Functiongexplanatory vari-
ables. a

4.4.1 Example: Evaluation of an Bermudan Option on a Stock (Backward Algorithm
with Conditional Expectation Estimator)

We consider a Bermudan option on a Stock. The Bermudan should allow exercise at times
Ty < Ty < ...T,. Upon exercise iff; the holder of the option will receive

Ni - (S(T) - o)

once. If no exercise is made he will receive nothing.

We will apply thebackward algorithnto derive the optimal exercise strategy. All payments
will be considered in their Numéraire relative form. Thus the exercise criteria given by a
comparison of the conditional expectation of the payments received upon non-exercise with
the payments recieved upon exercise.

Induction start: ¢ > 7,, Beyond the last exercise we have:

e The value of the (future) paymentsiis, . ; = 0.

Induction step: t =T;,i=n,n—1,n—2,...1 InT; we have:
e In the case of exercise is ifi the value is

- N;i(S(T;) — K3)
i) '

Vunderl,i(ﬂ) = ](V(T (4)

e In the case of non-exercise i the value iV, (T;) = EQ(U;, 1 | Fr,). This value
is estimated through a regression for given paths.. . , wy,:

— LetY; be given Fr, measurable) basis functiohd.et the matrixX consist of the

column vectory;(wg), k = 1,...,m. Then we have
Vhota i (T, w1) Uis1(w1)
: ~ X-(XT-Xx)THXT. : . (5
Vhold,i(Tia wm) ﬁi—&-l(wm)

e The value of the payments of the productlinunder optimal exercise is given by

U' - Vunderl,i(Ti) if ‘Zlold,i(ﬂ) < Vunderl,i<Ti)
Y Ui else.

Remark 5 (Backward Algorithm):  Our example is of course just the backward algorithm
with an explicit specification of an underlying)(and an explicit specification of an exercise
criteria, here given by the estimator of the conditional expectasinn (

Remark 6 (Binning as Linear Regression): In [6] it is shown that binning may be under-
stood as a special case of the linear regression: Binning is a linear regression where the basis
functions are the indicator functions of the bins. S&ddr the (simple) proof.

6 Suitable basis functions for this example aréonstant),S(7;), S(T;)?, S(T;)3, etc., such that the regression
function f will be a polynomial inS(T7;).
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5 Foresight Bias: Classification, Calculation & Removal

The foresight bias is an option on the Monte Carlo error of the conditional expectation esti-
mator. The standard deviation of the Monte Carlo error is the volatility of that option and the
foresight bias is always non-negative.

Consider the optimal exercise valuewx(K, E(V | Z)) where the conditional expectation
estimator has a Monte Carlo error which we denote.bijhen the foresight bias is given by:

E(max(K,E(V | Z) +¢) | Z) = max(K,E(V | Z)) + foresightbias.

Remark 7 (Notation): Here and in the following we will consider the exercise criteria
max(K,E(V | Z)), i.e. with the notation used in the previous sectiérstands forU;
andK stands foﬁunderlyi(Ti) for somei. The conditional expectation estimator (e.g. binning,
regression) will be denoted Byt in place ofE, i.e.

ESY(V | Z)=E(V | Z) +e

5.1 Numerical Removal of the Foresight Bias

The standard approach to remove the foresight bias is to use two independent Monte-Carlo
simulations. One will be used to estimate the exercise criteria (as a functional dependence on
some state variable), the other will be used to calculate the payouts.

5.2 Motivation for an Analytical Estimate and Removal of Foresight
Bias

The numerical removal of the foresight bias has two disadvantages:

e Numerical removal of the foresight bias slows down the pricing. Two independent
Monte-Carlo simulations of the stochastic processes have to be generated. For some
models (e.g. high dimensional interest rate models like the LIBOR Market Model) the
generation of the Monte-Carlo paths is relatively time consuming.

e Numerical removal of the foresight bias makes the code of the implementation cum-
bersome. Itis a desired design pattern to separate the stochastic process model and the
generation of the Monte-Carlo paths from product pricing. The structure of the code will
likely become less clear if a second independent simulation has to be created.

An alternative to the numerical removal of the foresight bias is to not remove the foresight
bias at all. This approach may be justified by the fact that the foresight bias will tend to zero
as the number of paths tends to infinity. In addition the foresight bias is rather small, usually it
is within Monte-Carlo errors. We will give an estimate of the foresight bias in the Se&tin

However neglecting foresight bias may create larger relative errors when considering mul-
tiple exercise dates or a book of multiple options with foresight bias. The discussion of whether
it is feasible to neglect the foresight bias will be given in Sectoh

5.3 Estimation of the Foresight Bias

We want to asses the foresight bias induced by a Monte-Carlo«ofdhe conditional expec-
tation estimatoEl(V' | Z), i.e. we consider the optimal exercise criteria

max(K,E(V | Z) +¢).
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Conditioned on a gively = 2* we assume that has normal distribution with meahand
standard deviation for fixed E(V | Z), i.e. we assume independence/d¥Z. Then we have
the following result for the foresight bias:

Lemma 8 (Estimation of Foresight Bias): ~Given a conditional expectation estimator of
E(V|Z) with (conditional) Monte-Carlo error having normal distribution with meah and
standard deviatioa will result in a bias of the conditional meanwfax (K, E(V|Z)+¢) given

by

nw—K w—K -
B-ES) 4 - (1 e(-E) + K - max(K E(V|Z) L (©)
— —
foresight bias smoothed payout true payout
biased high diffusive part, biased low

wherey := E(V|2), ¢(z) :== \/%7 exp(—32?) and®(z) == [*_ ¢(¢) d¢.

Proof (of Lemma 8): Let e have Normal distribution with meahand standard deviation.
Fora,b € R we have withy* :=b —a

E(max(a,b+ €)) = E(max(0,b — a +¢€)) + a = E(max(0, u* +¢€)) + a

B S B PR
— o[ et dera= 2 [ e oDy dora

g —p*
= [ aat) o) dota
—o o) b (- a(-E) +a,

where we used z¢(z) dz = ¢(x).
The result follows witth = E(V|Z2),a := K, i.e.u* = p— K. O

Remark 9 (Interpretation): The bias induced by the Monte-Carlo error of the conditional
expectation estimator consists of two parts: The first pa)rcdnsists of the systematic one
sided bias resulting from the non linearity of thex(a, b + x) function. The second partis a
diffusion of the original payoff function. The Monte-Carlo error smears out the original payoff.
The first part should be attributed to super-optimal exercise due to foresight, the second part to
sub-optimal exercise due to Monte-Carlo uncertainty.

In Figure3 we graph the two parts, namely the functior- o - ¢(%) (foresight bias, red)
andz — x - (1 — ®(—2)) (smoothed out payout, blue).

Since the payout with foresight bias (i.e. the sum of the red and the blue curve in Bjgure
is always greater than the payout without foresight bias (the green curve in Bigwe have
that the first part in) is always a dominant part. Usually (as in Fig®eit is much larger
than the negative bias from the diffusive part. See also Figure

The smeared out payout (blue curve) lies below the true payout (green curve) since after
having removed the foresight bias part we are left with a suboptimal exercise strategy, where
the suboptimality stems from the disturbance induced by the Monte-Carlo error. This effect
is also visible when removing the foresight bias numerically: for a lower number of path the
price will be more biased low.

We define the first term ir6j as the foresight bias correction.

Definition 10 (Foresight Bias Correction): 1
With the notation as in Lemm&we define
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Figure 3: Components of a foresight biased payout (1). The figure shows the plot of the foresight bias
part (red) and the smeared out payout (blue) fore= 0.1 and K = 0 as a function of. (the distance
from the exercise boundary).

as theforesight bias correctionf the optimal exercise criteria
max(K, E(V|Z)),
wherep := E(V|Z) ando? is the variance of the Monte-Carlo erroof the estimatog..

We also give a name to the second partah (

Definition 11 (Suboptimality Correction):

With the notation as in Lemm@&we define

-
g

7= (= ) - (1 o= L)) max(0, - K)

as thesuboptimal exercise correctiamf the optimal exercise criteria
max(K,E(V|Z)),

wherey := E(V|Z) ando? is the variance of the Monte-Carlo erroof the estimatop..

5.4 Analytical Removal of Foresight Bias

We correct for the foresight bias induced for the optimal exercise
max(K,E(V | Z))

by subtracting the term
est K
e )

from the payout on each path, wher&® := E**(V | Z) ando®* is some estimator for the
Monte-Carlo errok (see below). With the notation in Secti@nhwe correct for the foresight
bias by modifying the update rule of the backward algorithm towards

Vunderl(T’i) if Vunderl (Tz) > EeSt(‘N/ ‘ Z)

Uitr else.

Ui = _ﬂest + {
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Figure 4. Components of a foresight biased payout (2). The two graphs above show the funetion
z- (1 —®(—2%)). Compared to the true payout it is biased low. The two graphs below show the function
0o -¢(2)+x- (1 - (—%)). Obviously the terna - ¢(2) dominates and compared to the true

payout the result is biased high. The figure shows the functions fordrem0.01 (red) too = 0.1
(green) too = 1.0 (blue).

Note that3 is stochastic since := E(V | Z) ande are stochastic. They are conditional
means and conditional standard deviations. However we have for agiven* thatg|{Z =
z*} is not stochastic. Conditioned & = z*} the foresight bias is thus removed. Integrating
overz* we have that subtracting removes the foresight bias globally.

5.5 Analytical Removal of Foresight Bias and Suboptimal Exercise

In addition to a correction for the foresight bias we may also correct for the additional term
in (6) which represents the subobtimality induced by the Monte-Carlo noise. To do so we not
only subtract3°s* but also subtract

est

1

1 (- ) (1 (- )) — max(0, 4 — K) ®)

O—est
from the payout on each path, wher&* := E**(V | Z) ando*** is some estimator for the
Monte-Carlo errok (see below). With the notation in Secti@8nhwe correct for the foresight
bias by modifying the update rule of the backward algorithm towards

7 5 5 Vun er E if Vun er Ti > EeSt ‘7 Z
Uﬁz_ﬁﬁ_fﬁ+{~dl<> den(T3) > E=(V | 2)
Uit1 else.

Sincey*st is negative (it is the amount lost due to suboptimal exercise due to Monte-Carlo
noise) this correction will increase the price. However The absolute valyé*ofs much
smaller than3®st. The effect of this correction is only visible when using a low number of
path.
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We will present numerical results of the full correctiGri+ v in Section6.2
From now on we will drop the superscrigt® andy, o and 3 denote the corresponding
estimates thereof.

5.6 Implementation of the Analytical Removal of Foresight Bias

The foresight correction7] is independent from the method used to estimate conditional ex-
pectation, e.g. binning or polynomial regression (aka. Longstaff & Schwat, 8]). How-
ever some care has to be taken when calculating the estimatausefd in foresight correction.

5.6.1 Calculation of the Monte-Carlo error

To calculate the foresight correctigii*t we need to estimate the variance of the Monte-Carlo
errore. In other words we are interested in the standard error of the estimated conditional
expectatiorE*st (V' | Z).

Binning: Let us consider first the simple case of a binning. Then we have

1 N
o*(w) ~ —— - B((V — )’ | Z = Z(w))
wheren,, denotes the number of paths in the Binwith Z(w) € U. And the conditional
varianceE((V — p)? | Z) is estimated by theamebinning as
- 1 o
B(V-p)?Z=2w)=— > (V@ -p
© weU(w)

Regression: For the general case of a regression the standard error is calculated as
o? mtr(X - (XT-X)71 XT) EB(V - w)? | 2),

whereX is the matrix of basis functions used to estimt& | Z). For an in depth discussion
and an proof of this result we refer the reader to the standard literature on multiple regression,
e.g. pl.

The conditional varianc&((V — x)? | Z) of the residuals may be estimated by the same
or a different regression or method. Note however B@l” — )2 | Z) may become negative
when using a humerical approximation to the true conditional variance. This is frequently the
case when a polynomial regression is used to estimate the conditional expectafi’on of2.
In our implementation we have fixed this by just taking

max(E((V —u)?|2), 0)

instead. For small number of path the adjusted estimate

2 n

0" =

E(V-n?|2)

n—q

should be used, whereis the number of path angthe number of basis functions.
Note also that for — 0 we haves — 0, which should be used in case of a division by
Zero exception.
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5.7 Is the foresight bias negligible?

Let us consider the analytical removal@§ince this will correspond to the numerical removal
of the foresight bias and the effect of the additional suboptimality corregtigsronly visible
for large Monte-Carlo errors, i.e. small number of paths.

Our formula suggests that the foresight biass of the order of the Monte-Carlo error.
Thus one is tempted to conclude that it is safe to neglect the foresight bias. Indeed, in our test
case of a Bermudan option with three exercises (see Sexfioh) we found that the foresight
bias is within one standard deviation of the Monte-Carlo price.

5.7.1 Aggregating Foresight Biased Options

However, summing up different options - each with a foresight bias and a Monte-Carlo error
- may change the picture. If two options differ in strike or maturities their Monte-Carlo er-
rors may become more an more independe@onsider a book of. options (compound or
Bermudan). If then options have independent Monte-Carlo errors with standard deviation
the Monte-Carlo error for the portfolio will be’n - o. But since the foresight bias is a system-
atic error it will grow linearly inn, i.e. if then options have a foresight bigsthe book will
exhibit a foresight bias af - 5. Assuming that for a family of options ando are of the same

size we could say that: only if the Monte-Carlo errors of the single product prices are perfectly
correlated we would have that the ratio of foresight bias to Monte-Carlo §ruira portfolio

does not grow with the portfolio size.

This is also obvious from the interpretation of the foresight bias as an option on the (indi-
vidual) Monte-Carlo error. The book will containsuch option$. In the end we have that the
foresight bias may likely become significant.

For a Bermudan option with many exercise dates the situation is even worse. Here we
have a Bermudan option on the foresight biases induced in each maturity. In S&&idn
we calculated the foresight bias for an option with nine exercise dates and compare it to three
options each with three of the nine exercise dates. While the option with three exercises showed
foresight biases of.4 to 0.5 times the Monte-Carlo error the option with all nine exercises
showed a foresight bias df3 times the Monte-Carlo error. The calculation in Sectf®8.2
suggest that for a Bermudan option the Monte-Carlo errors average, but the foresight biases
add.

The two effects become visible in our numerical experiments, see $able

5.7.2 Parallelization of Pricing with Foresight Bias

Not removing the foresight bias has a severe influence on the parallelization of pricing. For
European options Monte-Carlo has the pleasing property that avenag@sylts fromn inde-
pendent Monte-Carlo simulations reduces the pricing error by a fact%oﬂ'his is also true

for the Monte-Carlo error of a Bermudan, but not for its foresight bias. Aggregating Monte-
Carlo prices will increase the size of the foresight bias relative to the Monte-Carlo error thus
making the foresight bias a dominant effect.

7 As example consider the two payoutsn (max(S(T), a1), b1) andmin(max(S(T), az), b2) (i.e.S(T') capped
and floored). If(a1,b1) and (a2, b2) are disjoint a sampling of (") will (in general) generate independent
Monte-Carlo errors for the two payouts.

8 Of course foresight bias may cancel if one averages short options with long options.

9 Our test case in Sectidh3.1exhibited a foresight bias.5 of the Monte-Carlo error. Pricing a book b options
may result in a foresight bias aroufidtandard deviations (tH#% quantile).

(©2005 Christian Fries 15 Version 1.1.4 (20051128)
http://www.christian-fries.de/finmath/foresightbias


http://www.christian-fries.de/finmath/foresightbias

Foresight Bias and Suboptimality Correction Christian P. Fries

6 Numerical Results

We will present numerical results for different experiments:

e We show how the foresight bias becomes significant if independent Monte-Carlo simu-
lations are aggregated and how the numerical and analytical method correct for it.

e We show how the foresight bias relates to the Monte-Carlo error for increasing number
of paths.

e We show that the ratio of foresight bias to Monte-Carlo error increases for options with
more exercise dates or a portfolio of options.

6.1 Benchmark Model

Our Benchmark model is a simple Black-Scholes model for an &saétereS follows
dS = pSdt + o SAW

with S(0) = 1.0, o = 20%, and assuming the risk free asdét = r Bdt with r = 5%.

6.2 Aggregation of Monte-Carlo Prices

We setupm independent Monte-Carlo simulation witlym paths and calculate the average
price of a Bermudan option price over the set of Monte-Carlo simulations. Wemwdrgm

m = 1, i.e. a single Monte-Carlo simulation with a huge number of pathspte- 2048,
i.e. many small Monte-Carlo simulations.

The aggregated prices have similar Monte-Carlo errors and for an European option the
different methods should result in (almost) identical prices. For a Bermudan option the differ-
ent methods of aggregation are not equivalent. The foresight bias is a systematic error being
O(y/m/n).

Figure5 and6 show that the numerical removal of the foresight bias and our analytical
removal of the foresight bias give very similar results. The Figure shows the price resulting
from the aggregation af: Monte-Carlo simulations, each such that the total number of paths
is independent ofn. Form large a single Monte-Carlo simulation has a low number of paths,
thus a larger foresight-bias. This parallelization has a huge impact on the price accuracy if
foresight bias is not removed. If foresight bias is removed the price will slowly become lower.
This is due to the fact that the optimal exercise is smeared out by the diffusive tejn in (

Our benchmark product is a simple Bermudan optiorSamhere the holder has the right
to receive once

N;-(S(T) — K;) inT;

or nothing if none of the options is exercised. The calculation shown are for three exercise
dates with

Bermudan option with three exercises
Exercise datd’; | 1.00 2.00 3.00
Notional V; 1.00 1.00 1.00
Strike K; 095 1.00 1.10

Table 1: Specification of the product used in Figlis@nd6.
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Option price by aggregation (204800 paths total, binning)
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1 2 345 10 2IO 30 100 260 1000 1000
Number of independent calculations aggregated

-®- Foresight not removed -®- Foresight removed numerically
Foresight removed analytically
Foresight and suboptimality removed analytically

Aggregated Price
Number of  Number off Without = Numerical Analytical Analytical
Independent  Paths per Foresight Foresight Foresight  Foresight and
Simulations  Simulation. Removal Removal only Suboptimality
1 204800 17,328% 17,295% 17,302% 17,308%
2 102400 17,330% 17,303% 17,262% 17,274%
4 51200 17,323% 17,234% 17,187% 17,214%
8 25600 17,417% 17,226% 17,182% 17,224%
16 12800 17,510% 17,166% 17,059% 17,145%
32 6400 17,689% 17,061% 16,918% 17,060%
64 3200 17,961% 16,826% 16,671% 16,911%
128 1600 18,450% 16,692% 16,314% 16,704%
256 800 19,353% 16,541% 16,066% 16,660%
512 400 20,481% 16,259% 15,659% 16,503%
1024 200 22,287% 16,083% 15,908% 16,944%

Figure 5: Aggregation of Monte-Carlo Prices with or without Removal of Foresight. The conditional
expectation is estimated by a binning with 100 bins. Note that since we use 100 bins the last scenario
(using 200 paths per individual Monte Carlo simulations) calculated the conditional expectation using
two paths. Thus we almost have a perfect foresight. Correcting the foresight by estimating the Monte
Carlo error from the two paths gives very good results in average. Note that a numerical removal of the
foresight bias may still result a (small) bias high since it is not guaranteed that the two simulation used
are independent, especially when aggregating many subsequent runs.

For small number of paths the additional correction for the suboptimal exercise (green curve) gives even
better results.
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Option price by aggregation (204800 paths total, polynomial regression)
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Number of independent calculations aggregated

-m- Foresight not removed -®- Foresight removed numerically
Foresight removed analytically
Foresight and suboptimality removed analytically

Aggregated Price
Number of  Number off Without = Numerical Analytical Analytical
Independent Paths per Foresight  Foresight Foresight Foresight and
Simulations  Simulation, Removal Removal only Suboptimality
1 204800 17,240% 17,264% 17,234% 17,235%
2 102400 17,314% 17,303% 17,304% 17,306%
4 51200 17,277% 17,273% 17,247% 17,253%
8 25600 17,307% 17,291% 17,247% 17,256%
16 12800 17,384% 17,328% 17,323% 17,333%
32 6400 17,363% 17,238% 17,272% 17,288%
64 3200 17,430% 17,280% 17,246% 17,279%
128 1600 17,487% 17,191% 17,195% 17,248%
256 800 17,613% 17,103% 17,148% 17,227%
512 400 17,895% 17,082% 17,083% 17,222%
1024 200 18,286% 16,893% 16,939% 17,181%
2048 100 18,781% 16,642% 16,726% 17,090%
4096 50 19,744% 16,440% 16,660% 17,207%

Figure 6: Aggregation of Monte-Carlo Prices with or without Removal of Foresight. The conditional
expectation is estimated by a regression using a polynomial of order 5.

For small number of paths the additional correction for the suboptimal exercise (green curve) gives even
better results.
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6.3 Relation of Foresight Bias to Monte-Carlo Error

We calculate Monte-Carlo prices for an Bermudan option with three exercise dates. Foresight
bias in either not removed, removed numerically or removed analytically. The pricing is per-
formed with different number of paths. The pricing is repeated 15000 times with different sets
of random numbers (seeds). We graph the distribution of Monte-Carlo prices and access the
Monte-Carlo error. In the following examples we consider only the foresight bias correction

3.

6.3.1 Example 1: Bermudan Option with three Exercise Dates

We consider the Bermudan option with three exercises as given inZable

Product B1: Option with three exercises
Exercise datd; | 1.00 2.00 3.00
Notional V; 1.00 1.00 1.00
Strike K; 1.00 1.06 1.12

Table 2: Product B1: Option with nine exercises.

rglogée Carlo prices of Bermudan option (1000 paths, 5 basisfcns) rglggée Carlo prices of Bermudan option (2000 paths, 5 basisfcns)
0 X
Without f.b. removal: ' 15,800% +/- 0,738% Without f.b. removal: 15,655% +/- 0,527%
0.055 1 Numeric f.b. removal: ' 15,338% +/- 0,741% (f. bias = 0,463%) 0.055 1 Numeric f.b. removal: ' 15,363% +/- 0,526% (f. bias = 0,292%)
0,050 { - Analytic f.b. removal:  15,288% +/- - 0,743% (f. bias = 0,513%) 0,050 { - Analytic f.b. removal:  15,336% +/- 0,530% (f. bias = 0,319%)
0,045 0,045
0,040 0,040
3 0,035 2 0,035
g g
3 0,030 3 0,030
o o
[ (7]
I 0025 L 0025
0,020
0,015
0,010
0,005
0,000
0,145 0,150 0,155 0,160 0,145 0,150 0,155 0,160
Price Price
W Foresight not removed ™ Foresight removed numerically ‘ | W Foresight not removed ™ Foresight removed numerically
Foresight removed analytically Foresight removed analytically
Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns) Monte Carlo prices of Bermudan option (10000 paths, 5 basisfcns)
0,060 0,060
Without f.b. removal:  15,551% +/- 0,336% Without f.b. removal: ' 15,490% +/- 0,239%
0055 1 Numeric f.b. removal: | 15,388% +/- 0,334% (f. bias = 0,163%) 0.055 1 Numeric f.b. removal: | 15,389% +/- 0,237% (f. bias = 0,102%)
0,050 { - Analytic f.b. removal: - 15,379% +/- - 0,336% (f. bias = 0,172%) 0,050 { - Analytic f.b. removal: - 15,385% +/- - 0,238% (f. bias = 0,105%)
0,045 0,045
0,040 0,040
& 0,035 2 0,035
g 5]
3 0,030 3 0,030
o o
[ (7]
T 0025 I 0025
0,020 0,020
0,015 0,015
0,010 0,010
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0,000 - 0,000 -
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Price Price
W Foresight not removed ™ Foresight removed numerically ‘ | W Foresight not removed ™ Foresight removed numerically
Foresight removed analytically Foresight removed analytically

Figure 7: Distribution of Monte-Carlo prices without (red) and with (blue and green) removal of foresight
bias for an Bermudan option with three exercise dates. The blue distribution is almost hidden behind the
green distribution since the analytical and numerical removal give very similar results.
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6.3.2 Example 2: Bermudan Option with nine Exercise Dates

We calculate Monte-Carlo prices for an Bermudan option with nine exercise dates. Foresight
bias in either not removed, numerically removed or analytically removed. The pricing is per-
formed with different number of paths. The pricing is repeated 20000 times with different sets
of random numbers (seeds) to access the Monte-Carlo error. The results are shown i Figure
and10.

We consider the Bermudan option with nine exercises as given in3able

Product B4: Option with nine exercises

Exercise datd; | 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9,00
Notional N; 1.00 100 100 1.00 1.00 1.00 1.00 1.00 1/00
Strike K; 1.00 106 1.12 119 126 134 142 150 1/59

Table 3: Product B4: Option with nine exercises.

hollggée Carlo prices of Bermudan option (1000 paths, 5 basisfcns) rglggote Carlo prices of Bermudan option (2000 paths, 5 basisfcns)

Without f.b. removal: 24,811% +/- 1,357% Without f.b. removal: 24,260% +/- 0,964%
0,055 1 Numeric f.b. removal: 22,993% +/- 1,287% (f. bias = 1,818%) 0,055 1 Numeric f.b. removal: 23,114% +/- 0,915% (f. bias = 1,147%)
0,050 | - Analytic f.b. removal:  22,416% +/- 1,296% (f. bias = 2,395%) 0,050 { - Analytic f.b. removal: 22,807% +/- 0,918% (f. bias = 1,453%)
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2 0,035 2 0,035
5 5
3 0,030 S 0,030
=4 =
Q @
L 0,025 L 0,025
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0,015 0,015
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Price Price

W Foresight not removed ™ Foresight removed numerically
Foresight removed analytically

W Foresight not removed ™ Foresight removed numerically
Foresight removed analytically

hollggée Carlo prices of Bermudan option (5000 paths, 5 basisfcns)

' Without f.b. removal: 23,802% +/- 0,606%

Numeric f.b. removal: 23,199% +/- 0,578% (f. bias = 0,603%)
Analytic f.b. removal:  23,074% +/- 0,578% (f. bias = 0,728%)
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Frequency
o o o o
o O o o
S 8 8 8
S & 8 &

0,015
0,010
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0,000

0215 0,220 0,225
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Price
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hgoorg)e Carlo prices of Bermudan option (10000 paths, 5 basisfcns)

: Without f.b. removal: 23,607% +/- 0,425%

Numeric f.b. removal: 23,251% +/- 0,408% (f. bias = 0,357%)
Analytic f.b. removal: 23,191% +/- 0,406% (f. bias = 0,416%)
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Figure 8: Distribution of Monte-Carlo prices without (red) and with (blue and green) removal of foresight

bias for an Bermudan option with nine exercise dates.
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Convergence of Monte Carlo price
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Figure 9: Product B1 (Bermudan with nine exercise dates): Convergence of Monte-Carlo prices without
foresight removal (red) and with analytic foresight removal (green) and Monte-Carlo error (blue corridor
= one standard deviation).
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Figure 10: Product B4 (Bermudan with nine exercise dates): Convergence of Monte-Carlo prices without
foresight removal (red) and with analytic foresight removal (green) and Monte-Carlo error (blue corridor
= one standard deviation).
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6.3.3 Example 3: A Portfolio of Bermudan Options

In addition to the products B1 and B4 we consider the two Bermudan option with three exer-
cises as given in Tablke Note that the product B4 is just a Bermudan on B1, B2, B3.

Product B2: Option with three exercises Product B3: Option with three exercises

Exercise datd; | 4.00 5.00 6.00 Exercise datd; | 7.00 8.00 9.00
Notional V; 1.00 1.00 1.00 Notional V; 1.00 1.00 1.00
Strike K; 1.19 126 1.34 Strike K; 142 150 1.59

Table 4: Product B2 and B3: Option with nine exercises.

We calculate foresight biagl and Monte Carlo erroro) for the prices of the Bermudan
options B1, B2, B3 and B4 as well as for the two portfol{dsB1, 1 -B2, 1-B3} {1-B2, -B3}.
Since the Bermudan option B4 is just the union of the underlyings of B1, B2 and B3 we denote

it by {B1V B2V B3}.

The results are given in Tabfe Each pricing used 5000 paths an was repeated 20000 times

with different sets of random numbers.

Option / Portfolio foresight biag3 Monte Carlo error Ratiog
Bl 0.172 0.336 0.51
B2 0.198 0.491 0.40
B3 0.271 0.656 0.41

| B4={B1vB2VB3} \ 0.728 0.578 1.26 |
{5-B2+;-B3} 0.234 0.518 0.45
{5 Bl+;-B2+; B3} 0.214 0.428 0.50

Theoretical values assuming perfectly uncorrelated Monte-Carlo errors

{5 B2+ ; -B3} 0.235 0.410 0.57
{;-Bl+;-B2+; B3} 0.214 0.295 0.72
Theoretical values assuming perfectly correlated Monte-Carlo errors

{; B2+ B3} 0.235 0.574 0.41
{3 Bl+: B2+ 3 B3} 0.214 0.496 0.43

Table 5: Comparrison of foresight biag3] and Monte Carlo error §) for single options and portfolios.

We see in Tabl& the behavior which we have discussed qualitatively in Se&i@nThe

foresight bias of a portfolio is just the sum of the

foresight bias of the foresight biases of its

components. Compared to the Monte-Carlo error of the portfolio the foresight bias ratio grows.

For example we have
B1g2r183 = 0.234 ~ 0.235 =
01.g24 183 = 0.518 < 0.574 =
and likewise

6%~Bl+%~52+%‘33 =0.214 ~ 0.214 =

W= W=

U%~Bl+%~B2+%‘B3 =0.428 < 0.494 =

22
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So for both cases we have that the ratio of foresight bias to Monte-Carlo error increases:

1 1

51.52-«-&453 = P2+ 5 - Op3

———=— =0.45>041= %

01.8241B3 502+ 5 0B3

1 1 1

B B1+i B2+ ] B3 301+ 3 B2+ 3 0OB3
——3 —3 — =0.50>043 = :1” :1” ? )
01.B141.B2+1.B3 5:0B1+ 5082+ 5083

Thus the relative foresight bias increases.

For the Bermudan option B& {B1 Vv B2V B3} having nine exercise dates the rago
increases to 1.26, so the ratio almost triples. Here we have that the foresight biases almost add,
while the Monte-Carlo errors are just averaged. See Figjlire
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Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns) Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns)
0,06 0,060
Without f.b. removal: ' 15,551% +/- 0,336% Without f.b. removal: 20,042% +/- 0,494%
0055 1 Numeric f.b. removal: | 15,388% +/- 0,334% (f. bias = 0,163%) 0.085 1 Numeric f.b. removal: 19,821% +/- 0,497% (f. bias = 0,221%)
0,050 { - Analytic f.b. removal: - 15,379% +/- - 0,336% (f. bias = 0,172%) 0,050 { - Analytic f.b. removal: - 19,844% +/- 0,491% (f. bias = 0,198%)
0,045 0,045
0,040 0,040
3 0,035 3 0,035
g g
2 0030 3 0,030
[ [
T 0025 L 0025
0,020 0,020
0,015 0,015
0,010 0,010
0,005 0,005
0,000 - 0,000 -
0,145 0,150 0,155 0,160 0,165 0180 0185 0190 0,195 0200 0,205 0,210
Price Price
Foresight not removed Foresight removed numerically | | W Foresight not removed M Foresight removed numerically ‘
Foresight removed analytically Foresight removed analytically
(a) Product B1: Thee exercisés.0, 2.0, 3.0} (b) Product B2: Thee exercis¢4.0,5.0,6.0}
Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns) rglggte Carlo prices of Bermudan option (5000 paths, 5 basisfcns)
0,06 X
Without f.b, removal: 23,449% +/- 0,661% Without f.b. removal: 23,802% +/- 0,606%
0055 1 Numeric f.b. removal: 23,159% +/- 0,666% (f. bias = 0,290%) 0.055 1 Numeric f.b. removal: 23,199% +/- 0,578% (f. bias = 0,603%)
0,050 { - Analytic f.b. removal: - 23,178% +/- 0,656% (f. bias = 0,271%) 0,050 { - Analytic f.b. removal: - 23,074% +/- 0,578% (f. bias = 0,728%)
0,045 0,045
0,040 0,040
3 0,035 2 0,035
2 2
S 0030 $ 0030
g g
L 0025 g L 0025
0,020 0,020
0,015 0,015
0,010 0,010
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0,000 + 0,000 -
0215 0220 0225 0230 0235 0240 0245 0,250 0215 0220 0225 0230 0235 0240 0245 0,250
Price Price

W Foresight not removed M Foresight removed numerically | | W Foresight not removed ™ Foresight removed numerically ‘
Foresight removed analytically Foresight removed analytically

(c) Product B3: Thee exercis¢%.0, 8.0,9.0} (d) Product B4: All nine exerciseB1 Vv B2V B3}
Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns) Monte Carlo prices of Bermudan option (5000 paths, 5 basisfcns)
i 0,06
Without f.b. removal: 21,736% +/- 0,529% Without f.b. removal: 19,678% +/- 0,437%
0055 1 Numeric f.b. removal: 21,482% +/- 0,531% (f. bias = 0,254%) 0.055 1 Numeric f.b. removal: 19,454% +/- 0,435% (f. bias = 0,224%)
0,050 { - Analytic f.b. removal: - 21,502% +/- - 0,518% (f. bias = 0,234%) 0,050 { - Analytic f.b. removal: - 19,464% +/- 0,428% (f. bias = 0,214%)
0,045 0,045
0,040 0,040
3 0,035 3 0,035
5 5]
3 0,030 3 0,030
=3 =
(7 [
L 0025 L 0,025
0,020 0,020
0,015 0,015
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Price Price
W Foresight not removed M Foresight removed numerically W Foresight not removed M Foresight removed numerically
Foresight removed analytically Foresight removed analytically

(e) Protfolio - B2+ 1 - B3 (f) Protfolio £ -B1+ 1 - B2+ £ - B3

Figure 11: Distribution of Monte-Carlo prices without (red) and with (blue and green) removal of fore-
sight bias for B1, B2, B3, the Bermudan B4 and the portfo{i®8, B3} and{B1, B2, B3}. Note how the
foresight bias is increased for the Bermudarii(d).
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7 Conclusion

The analytical foresight correction gives almost identical result to a numerical foresight cor-
rection even for small number of paths. Using the analytical foresight corrections allows to
keep the implementation as simple and efficient as without foresight correction. The foresight
corrections may also be used as a safe guard indicating whether or not you are allowed to
neglect foresight bias.

Our approach is independent of the method used to estimate the conditional expectation
and easy to implement. We provide a closed formula for the foresighttbisen a multiple
linear regression is used to estimate the conditional expectations (aka. Longstaff-Schwartz).

Our numerical results indicate that foresight bias should not be neglected, at least for
Bermudan option with many exercise dates or portfolios of Bermudan options.

The additional correction for the suboptimal exerciggifhproves the pricing when aggre-
gating Monte-Carlo simulations with small number of path.

Since our approach consisted of the analytic calculation of the error induced by the addi-
tional Monte-Carlo error variance it is universal in the sense that it is independet of the model
and the of the product considered.

Future work should run tests with high dimensional models like the LIBOR Market Model.
Here we expect the effects to be even greater due to higher decorrelation of Monte-Carlo error.
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List of Symbols
Symbol Meaning

1% The random variable representing the value received upon non-exergise (
tinuation valug and for which a conditional expectation has to be estimated
(i.e. one of thdJ; defined in the backward algorithm).

Z The random variable representing the value on which the expectatidh of
is conditioned (the predictor). In the pricing of Bermudan stock options this
might be the stock4 = S) or some intrinsic value4 = max(S — K, 0)).

Y The basis functionsi{ = (Y7, ..., Y,) used to approximate the functional de-
pendance — E(V | Z = z). For a polynomial regression the basis functions
are often monomials i&¥. In the pricing of Bermudan stock options this might
beY = (1,2,2%,...,297").

X The matrix of Monte Carlo samples of the regression basis funclionsed to
estimatel(V | Z). Each row represent the values of the basis functions on the
corresponding Monte Carlo path.

q Number of basis functions.

n Number of Monte Carlo paths.

€ Monte Carlo error of the conditional expectation estimatoy of

o Standard deviation of the Monte Carlo ereor

n— K Distance ofs(V | Z) from the exercise boundary .

10 The density of the standard normal distribution.

(©2005 Christian Fries

The cumulative distribution function of the standard normal distribution.

The foresight error correction.
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