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Abstract
We consider a generic framework for generating likelihood ratio weighted Monte Carlo simu-
lation paths, where we use one simulation scheme K◦ (proxy scheme) to generate realizations
and then reinterpret them as realizations of another scheme K∗ (target scheme) by adjusting
measure (via likelihood ratio) to match the distribution of K∗ such that

EQ(f(K∗) | Ft) = EQ(f(K◦) · w | Ft). (1)

This is done numerically in every time step, on every path.
This makes the approach independent of the product (the function f in (1)) and even of the

model, it only depends on the numerical scheme.
The approach is essentially a numerical version of the likelihood ratio method [5] and

Malliavin’s Calculus [11, 18] reconsidered on the level of the discrete numerical simulation
scheme. Since the numerical scheme represents a time discrete stochastic process sampled
on a discrete probability space the essence of the method may be motivated without a deeper
mathematical understanding of the time continuous theory (e.g. Malliavin’s Calculus).

The framework is completely generic and may be used for

• high accuracy drift approximations,

• process oriented importance sampling and the

• robust calculation of partial derivatives of expectations w.r.t. model parameters (i.e. sen-
sitivities, aka. Greeks) by applying finite differences by reevaluating the expectation with
a model with shifted parameters.

We present numerical results using a Monte-Carlo simulation of the LIBOR Market Model for
benchmarking.
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1 Introduction
Due to the high dimensionality of stochastic differential equations used in the pricing of finan-
cial derivatives, Monte Carlo methods are still one of the most important numerical tools for the
calculation of financial derivative prices (which disguise as expectations) and risk parameters
(Greeks, which are partial derivatives of expectations with respect to model parameters).

A standard Monte-Carlo simulation of a stochastic differential equation, e.g. an Itô process

dK = µKdt + Σ · Γ · dU , K(0) = K0 (2)

defined over a filtered probability space (Ω, Q,F , {Ft}) fulfilling the usual conditions, is given
by generating sample paths ω1, . . . , ωn of time-discrete realizations

K(t + ∆t) = K(t) +
∫ t+∆t

t

µK(τ)dτ +
∫ t+∆t

t

Σ(τ) · Γ(τ) · dU(τ) (3)

of (2). Since the integrals in (3) are usually not available in closed form the time-discrete
process is approximated - e.g. by an Euler scheme -

K∗(t + ∆t) = K∗(t) + µK∗
∆t + Σ · Γ ·∆U

The Monte-Carlo approximation of the expectation E(f(K(T )) |F0) of a function f of a
realization K(T ) is then given by

E(f(K(T ))|F0) =
∫

f(κ)φK(κ−K0)dκ

(5)
≈

∫
f(κ)φK∗

(κ−K0)dκ ≈ 1
n

n∑
i=1

f(K∗(T, ωi))
(4)

where φK and φK∗
denote the probability density of K(T ) and K∗(T ) respectively. To shorten

notation we will drop the conditioning on F0 in the expectation and the K(0), implicitly view-
ing the probabilities as transition probabilities depending on K(0) as a parameter. We assume
that the time discretization error is small, i.e. that the densities φK and φK∗

are close

||φK − φK∗
||C0 < ε. (5)

The whole procedure involves two approximation errors: The first is the time discretization
error, i.e. the distance of the two densities φK and φK∗

, the second is the Monte-Carlo error,
i.e. the error introduced by the approximation of the last integral in (4) through a sum.

1.1 Sensitivities
The simplest approach to calculate an approximation of the partial derivative of the expectation
is to apply finite differences to the Monte-Carlo price (the sum in (4)) (bumping the simulation).

Let X denote any model parameter (e.g K0, Σ, Γ) and let us assume that the densities φK

and φK∗
depend smoothly on X and are C1 close to each other (close also in first derivative)

||φK − φK∗
||C1 < ε. (6)

Then one might differentiate the above approximation to get partial derivatives of the expecta-
tion (price) with respect to a model parameter (giving the risk measure):

∂

∂X
E(f(K(T ))) =

∫
f(κ)

∂φK

∂X
(κ)dκ

(6)
≈

∫
f(κ)

∂φK∗

∂X
(κ)dκ

?
≈ 1

n

n∑
i=1

f ′(K∗(T, ωi)) ·
∂K∗

∂X
(T, ωi).

(7)
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In applications the partial derivative is numerically replaced by finite differences.
The last step in (7) holds only in a week sense and might not even be an “approximation”

(thus we put a question mark there). E.g. if f is not smooth, say even discontinuous, the last
term in (4) is discontinuous too, thus not differentiable.1 Applying finite differences results in
poor Monte-Carlo convergence rates since the Monte-Carlo integral has to accurately resolve a
region of the size of the shift. This is the reason why finite differences applied to Monte-Carlo
(bumping the simulation) has poor convergence rates for non-smooth functions f

This problem may be solved by using the Monte-Carlo approximation of the differentiated
integral rather than differentiating the Monte-Carlo approximation, i.e. we consider

∂

∂X
E(f(K(T ))) =

∫
f(κ)

∂φK

∂X
(κ)dκ

(6)
≈

∫
f(κ)

∂φK∗

∂X
(κ)dκ =

∫
f(κ)

∂
∂X φK∗

(κ)
φK∗(κ)

φK∗
(κ)dκ

!
≈ 1

n

n∑
i=1

f(K∗(T, ωi)) ·
∂

∂X φK∗
(K∗(T, ωi))

φK∗(K∗(T, ωi))
.

(8)

If we compare the last term in (8) with the one in (4) we see that the partial derivative is just
the expectation of a weighted payoff function f · w where the weight is given by

w =
∂

∂X φK∗

φK∗ =
∂

∂X
log

(
φK∗)

Thus the sensitivity has a similar approximation error than the price. This is essentially the
likelihood ratio approach of Broadie and Glasserman or the application of a Malliavin weight,
see [2, 5, 11, 18].2 It should be noted that (8) already exhibits a slight difference to the way the
likelihood ratio or Malliavin weight is usually considered, namely that we consider the weight
to be derived from the scheme Ke and not from the original scheme K, in other words:

We first apply a time discretization to the scheme and then apply the likelihood ratio.

This tiny modification will become important in the following.
However - the approach of a Malliavin weight loses the comfort of taking finite differences

by “bumping the model”. Shifting the model parameter has the charming advantage that it may
be applied to any model parameter without modification of the model implementation. It is a
scenario analysis of the model implementation. Instead, for (8) to work one has to know the
densities and derive new weights for any partial derivative operator.

1.2 Proxy Scheme
We modify the approach in (8) towards a more generic framework to which we may apply
finite differences by shifting input parameters while retaining the smoothness and convergence
properties of a likelihood ratio method:

In addition to K∗ consider another scheme K◦ with probability density φ◦. The probability
density φ◦ should be close to φ but need not to be a very accurate approximation. Then consider

1 It is in general a bad idea to differentiate an approximation if the terms are not close in C1. The approximation
property may be completely lost then.

2 For an overview on sensitivities in Monte-Carlo and an introduction to the proxy simulation scheme method see
also [6].
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the following Monte Carlo approximation:

E(f(K(T ))) =
∫

f(κ)φK(κ)dκ

(5)
≈

∫
f(κ)φK∗

(κ)dκ =
∫

f(κ)
φK∗

(κ)
φK◦(κ)

φK◦
(κ)dκ

≈ 1
n

n∑
i=1

f(K◦(T, ωi)) ·
φK∗

(K◦(T, ωi))
φK◦(K◦(T, ωi))

(9)

1.2.1 Sensitivities

For deriving a partial derivative with respect to a model parameter X take the proxy scheme
K◦ and its density φK◦

fixed, i.e it does not depend on X . Since φK∗
is C2 close to φK we

may differentiate this approximation and arrive at the likelihood ratio weighted Monte-Carlo

∂

∂X
E(f(K(T ))) =

∫
f(κ)

∂

∂X
φK(κ)dκ

(6)
≈

∫
f(κ)

∂

∂X
φK∗

(κ)dκ =
∫

f(κ)
∂

∂X φK∗
(κ)

φK◦(κ)
φK◦

(κ)dκ

≈ 1
n

n∑
i=1

f(K◦(T, ωi)) ·
∂φK∗

∂X (K◦)
φK◦(K◦)

=
∂

∂X

( 1
n

n∑
i=1

f(K◦(T, ωi)) ·
φK∗

(K◦)
φK◦(K◦)

)
(10)

Note that the differential operator only acts on φK∗
since φK◦

is assumed fixed. Also note that
the Monte-Carlo weight is the same in (9) and (10) and that the differentiation is applied to the
original Monte-Carlo approximation. For the implementation this means that the realizations

are generated by one scheme. The model parameter enter to the Monte-Carlo weights φK∗ (K◦)

φK◦ (K◦)

only. Thus the sensitivities may be calculated generically by applying finite differences to the
numerical implementation of the model (bumping the model).

1.2.2 Importance sampling

The proxy scheme calculation of the Monte-Carlo integral (9) may be viewed as a form of
importance sampling. Importance sampling is a technique where paths are not generated ac-
cording to the law of a given process, but according to some other law that focuses on paths
which are more important to the specific problem (hence the name). Here, we generate paths
not according to the target scheme, but according to the proxy scheme. If the proxy scheme
is chosen such that it favors paths which are more important to the specific problem, then we
do an importance sampling. So here, the importance sampling is specified by a process (the
proxy scheme process), and in some applications it is easier to specify a favored process than
a change of the law. The calculation of the corresponding measure change is usually a diffi-
cult part in the construction of an importance sampling simulation. Within a proxy simulation
scheme framework the calculation of the corresponding measure change is done numerically
from the simulation schemes.

1.2.3 High accuracy scheme

Beside the Monte-Carlo error, which may be reduced by choosing n larger, the approximations
(9) and (10) still exhibit the time discretization error: The time discrete approximation scheme
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K∗ differs from K (ie. φK∗
differs from φ). In financial models (at least the LIBOR Market

Model which we will consider) this difference often stems from the poor approximation of the
drift integral and may be of similar order as the Monte-Carlo error. This error disappears for
∆t → 0, however small time steps will increase the consumption of computation resources
(CPU time and memory).

Using a likelihood ratio weighted proxy scheme the accuracy of the scheme may be im-
proved just through the explicit knowledge of a more accurate transition density φK∗

. This can
be obtained by analytic expansions of the fundamental solutions. In [16] the convergence of
expansions with Varadhan metric ([22]) as leading term is shown. In [10] an even faster con-
vergent expansion of the fundamental solution will be applied to the LIBOR Market Model.

1.2.4 Generic framework

Since φK∗
and φK◦

are densities of time-discrete numerical schemes it is in general possible
to give them in closed form. We will in fact work with the transition probabilities for a single
time-step (for an Euler scheme this is just a normal distribution with known parameter). Using
a simple discrete simulation scheme K◦ we generate sample paths. Theses are reinterpreted
as realizations of K∗ and combined by a path and time-step wise correction of the transition
probability density by the likelihood ratio.

We see the novelty and added value of this paper in the following points:

• We provide a generic framework for generating a likelihood ratio weighted discrete sim-
ulation scheme which may be used for more accurate pricing (through the possibility of
much better drift approximation) and much more accurate sensitivity calculation.

• The approach considered here is applied to the numerical scheme, and thus essentially
model and product independent. This contrasts to most applications of the likelihood
ratio method and/or Malliavin calculus as they are being considered on the level of the
time continuous model and applied to a specific product.

• We calculate the likelihood ratios (Malliavin weights) numerically on the fly. The only
ingredients is a formula for the transition probabilities.

• We apply the approach to the LIBOR Market Model with numerical results.

• Our reference implementation shows that the approach is very efficient in term of com-
putational resources (cpu time and memory).

1.3 Layout of the paper
We will start in Section 2 by presenting the basics of the LIBOR Market Model, an interest rate
model to which we will apply the method and which we will use to conduct out benchmark
calculations. In Section 3 we will present some direct simulation schemes, among them the
Euler scheme and the predictor corrector scheme. The latter was introduced for the LIBOR
Market Model in [14] in order to reduce the time discretization error. Section 4 will briefly
discuss the problem of sensitivities in Monte-Carlo. Section 5 then presents the proxy scheme
with likelihood ratio weighted Monte-Carlo. Section 6 gives the data used in our benchmark
calculations which we will present in Section 7, 8 and 9.
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2 The LIBOR Market Model (used as example and bench-
mark model sde)

As application and to conduct some benchmark calculations we will consider option price and
sensitivity calculation within a LIBOR Market Model (LMM). Some challenging properties
of the LIBOR Market Model motivated its choice as our benchmark framework for numerical
calculations:

• The LMM is in general high dimensional and due to its non-linear drift it is not possible
to represent the state variable as a function of a low-dimensional Markovian process.
This makes Monte-Carlo simulation the natural choice.3

• The LMM features a non-linear state dependent drift such that standard direct simulation
schemes exhibit approximations errors in the drift part of the SDE.

• The LMM is one of the most popular, yet powerful interest rate models in practice.

We consider a tenor structure T0 < T1 < . . . < Tn+1 with forward rates Li := L(Ti, Ti+1) :=
P (Ti)−P (Ti+1)
P (Ti)·(Ti+1−Ti)

, where P (Ti) denote the zero coupon bond maturing in Ti - see [3, 21].

2.1 SDE
The LIBOR Market Model, see [3, 21], models the forward rate curve L = (L1, . . . , Ln) by
the SDE

dLi = Liµ
L
i dt + LiσidWi, i = 1, . . . n (11)

where W = (W1, . . . ,Wn) is a n-dimensional Q-Brownian motion with instantaneous corre-
lation matrix t 7→ R(t), i.e.

R(t) = (ρi,j(t))i,j=1,...,n, dWi(t)dWj(t) = ρi,j(t)dt.

We denote the filtration generated by W by {Ft}t∈[0,∞), the corresponding filtered probability
space by (Ω, Q,F , {Ft}t∈[0,∞)), with the usual assumptions on filtration, see [6, 20].

2.2 Driving Factors
Let f1(t), . . . , fm(t) ∈ Rn denote the orthonormal Eigenvectors (factors) corresponding to
the non-zero Eigenvalues (factor loadings) λ1(t) ≥ . . . ≥ λm(t) ≥ 0 of R(t).4 Then we may
write

dW = F ·
√

Λ · dU , (12)

where t 7→ F (t) is the n × m-matrix of the factors F = (f1, . . . , fm),
√

Λ =
diag(

√
λ1, . . . ,

√
λm) and U = (U1, . . . , Um) is an m-dimensional Q-Brownian motion with

mutually uncorrelated components Ui.5 Writing Γ = F ·
√

Λ we have dWi = (Γ · dU)i. Note
that

Γ · ΓT = R.

ΓT · Γ = Λ = diag(λ1, . . . , λm).

3 In common applications it is 20 to 40 dimensional SDE.
4 Note that R(t) is symmetric and thus all eigenvalues are real. We assume that the fi are chosen as an orthonormal

basis of the Rn.
5 Then dW · dWT = F ·

√
Λ · dUdUT ·

√
Λ · F = FΛFTdt = Rdt.
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2.3 Drift
We consider (11) under the terminal measure, i.e. Q denotes the equivalent martingale measure
corresponding to the numéraire N(t) := P (Tn+1; t), where P (Tn+1) denotes the zero coupon
bond with maturity Tn+1. Then the drift µL

i is given by

µL
i =

∑
i<j≤n

Ljδj

1 + Ljδj
σiσjρi,j . (13)

2.4 Log-Coordinates
Using log coordinates K := log(L), where L = (L1, . . . , Ln), K = (K1, . . . ,Kn) we
rewrite (11) (using vector notation) as

dK = µKdt + Σ · Γ · dU , (14)

where Σ = diag(σ1, . . . , σn), µK = (µK
1 , . . . , µK

n ) and µK
i = µL

i − 1
2σ2

i by Itô’s Lemma,
[6, 20].

2.5 Factor reduction
It is common to use a rather low dimensional Brownian U motion in (12). Common values
for the dimension of the Brownian motion are m ≤ 5, whereas common applications require
n ≥ 20. Using a low dimensional driving Brownian motion has the advantage that the driving
factors usually may be associated with an intuitive interpretation of interest rate curve move-
ments (parallel shift, tilt, etc.) and, in addition, improves Monte-Carlo convergence. To obtain
Γ one may extract a few prominent factors via principal component analysis.

Thus R is singular in general and ΓT acts as an projection onto an m-dimensional subspace
(namely D := (kern(Γ))⊥). (Restricted to that subspace Λ−1 · ΓT is the inverse of Γ).

To simplify notation we assume that Σ is a non-singular n × n matrix. This enables us to
recover the stochastic increments dU from the increment of the realizations dK via

dU = Λ−1ΓTΣ−1
(
dK − µKdt

)
.

2.6 Pricing
The price of an interest rate derivative6 with a time tk value (e.g. payout)
V (tk, L(t0), L(t1), . . . , L(tk)), depending on the interest rate realizations L at t0, . . . , tk, is
given as an expectation with respect to the measure Q:

V (t0) = N(0) · EQ
(

V (tk, L(t0), L(t1), . . . , L(tk)
N(tk)

∣∣∣ F0

)
(15)

where N(tk) denotes the numéraire which we have chosen to be N(tk) = P (tn; tk) (this
implies the expression of µL in (13)). Since N(tk) itself is a function of L(tk) we have

V (t0) = EQ(f(tk, L(t0), L(t1), . . . , L(tk))|F0)

=
∫

Rk×n

f(tk, L(t0), L(t1), . . . , L(tk))·

· φ(tk, L(t0), L(t1), . . . , L(tk)) d(L(t0), L(t1), . . . , L(tk)),

(16)

where φ denotes the probability density.7

6 To be precise: the price of the corresponding replication portfolio.
7 The integral in (16) is a Lebesgue integral. Abusing notation we write dL(ti) for dx to show the link of the

corresponding component of f and the density. Note that L(t0) and the 0-th component of the vector process L
are non stochastic, thus we write (loosely) Rk×n for the integration domain.
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3 (Standard) Monte-Carlo Simulation Schemes

3.1 Simulation Schemes
We consider a discretization 0 = t0 < t1 < t2 < . . . of simulation time and ask for a
simulation scheme for generating samples K(ti, ωj) of the time ti-realizations K(ti) of the
stochastic process K. This is usually done by generating sample path of a time-discrete process
(the scheme) K◦(ti), i = 0, 1, 2, . . ., where K◦(ti) is an approximation to K(ti).

3.1.1 Euler Scheme

One such scheme is the Euler Scheme of (14) given by

Ke(ti+1) = Ke(ti) + µK(ti,Ke(ti)) · (ti+1 − ti) + Σ · Γ · (U(ti+1)− U(ti)) (17)

- see [17]. The Euler scheme realizations Ke(ti) are crude approximation of the “true” real-
izations K(ti). If we assume that Σ · Γ is constant on (ti, ti+1) the discretization error of the
scheme is inaccurate integration of the drift term:∫ ti+1

ti

µK(t, K(t)) dt ≈ µK(ti,Ke(ti)) · (ti+1 − ti).

This drift approximation may be improved in several ways:

3.1.2 Predictor-Corrector Scheme

Another scheme of (14) is given by

Kpc(ti+1) = Kpc(ti) +
1
2
(
µK(ti,Kpc(ti)) + µK(t−i+1,K

p(ti+1))
)
· (ti+1 − ti)

+ Σ · Γ · (U(ti+1)− U(ti)),
(18)

where the predictor step is and (e.g.) an Euler scheme step

Kp(ti+1) = Kpc(ti) + µK(ti,Kpc(ti)) · (ti+1 − ti) + Σ · Γ · (U(ti+1)− U(ti))

and µK(t−i+1) := limt↗ti+1 µK(t). Note: This obscurity in notation stems from the appli-
cation to the LIBOR Market Model where it is common to use volatility functions which are
defined piecewise on [ti, ti+1), in general piecewise constant, yet discontinuous. This will lead
to a jump in drift at ti+1. For piecewise constant Σ and Γ in (14) the term µK(t−i+1, K̃

pc(ti+1))
may be replaced by µK(ti, K̃pc(ti+1)).

For the LIBOR Market Model the predictor corrector scheme was considered in [14].

3.1.3 Trapezoidal Average Drift Scheme

In some applications the drift has a special dependency structure which allows to obtain the
accuracy of the predictor-corrector scheme without the need to calculate the predictor step.
This will make the scheme almost as fast as the simple Euler scheme.

Assume for example that the j-th component µK
j (ti) of the drift is a function of Kl(ti)

with l > j only (in other words: the derivative of µK(ti) with respect to K(ti) is an upper
triangular matrix). This is the case for the LIBOR Market Model in terminal measure, see
Section 2. Then it is trivial to solve the (implicit Euler scheme) equation

Kta(ti+1) = Kta(ti) +
1
2
(
µK(ti,Kta(ti)) + µK(t−i+1,K

ta(ti+1))
)
· (ti+1 − ti)

+ Σ · Γ · (U(ti+1)− U(ti))
(19)
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for Kta(ti+1) to obtain an explicit scheme. In an implementation this can be done effectively
by looping backward over the component index j:
For j = n, n− 1, . . . , 1:

Kta
j (ti+1) = Kta

j (ti) +
1
2
µK

j (ti,Kta
j+1(ti), . . . ,K

ta
n (ti)) · (ti+1 − ti)

+
1
2
µK(t−i+1,K

ta
j+1(ti+1), . . . ,Kta

n (ti+1)) · (ti+1 − ti)

+ Σ · Γ · (U(ti+1)− U(ti)).

(20)

The trapezoidal average drift scheme uses the discrete drift

µKta
(ti) :=

1
2
(
µK(ti,Kta(ti)) + µK(t−i+1,K

ta(ti+1))
)

which is just a trapezoidal integration rule for the true average drift∫ ti+1

ti

µK(τ)dτ ,

hence its name.8

3.2 Transition probability of an Euler-type Monte-Carlo scheme
For a given path ω let x := U(Ti)(ω) and y := U(Ti+1)(ω). “Solving” (17) for ∆U(Ti) :=
U(Ti+1)− U(Ti) we have

∆U(Ti) = Λ−1/2FTΣ−1
(
∆Ke − µ̄K(Ti)∆Ti

)
. (21)

and using the transition probability of ∆U(Ti)(ω)

φ(Ti, x;Ti+1, y) =
1

(2Π∆Ti)n/2
exp(− (y − x)2

2∆Ti
)

we get from y − x = ∆U(Ti) and (21)

φKe
(Ti,Ki;Ti+1,Ki+1) =

1
(2Π∆Ti)n/2

exp
(
− 1

2∆Ti

(
Λ−1/2FTΣ−1

(
Ki+1 −Ki − µ̄K(Ti)∆Ti

))2
)

.

8 Note: A nice feature of the proxy scheme method which we introduce in Section 5 is that one may use implicit
schemes (as target scheme).
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4 (Standard) Monte-Carlo Sensitivities
Sensitivities9 are partial derivatives of V (t0) with respect to model parameters like the initial
condition L(t0), the volatility Σ and correlation structure Γ. If we denote any of these model
parameters by X we have (formally)

∂V (t0)
∂X

=

=
∫

Rk×n

f(tk, L(t0), . . . , L(tk)) · ∂

∂X
φ(tk, L(t0), . . . , L(tk)) d(L(t0), . . . , L(tk))

=
∫

Rk×n

f(tk, L(t0), . . . , L(tk)) ·
∂

∂X φ(tk, L(t0), . . . , L(tk))
φ(tk, L(t0), . . . , L(tk)

· φ(tk, L(t0), . . . , L(tk) d(L(t0), . . . , L(tk))

= EQ
(
f(tk, L(t0), . . . , L(tk)) · ∂

∂X
log

(
φ(tk, L(t0), . . . , L(tk))

) ∣∣∣ F0

)
,

which shows that the partial derivative is a weighted average of the payoff.10

4.1 Sensitivities in Monte-Carlo
Since the probability density of (L(t1), . . . , L(tk)) is a C∞ function of the model parameters
L(t0), Σ and Γ and the expectation operator is a convolution of f with the corresponding
probability density, the derivative price V (t0) is also C∞ w.r.t. L(t0), Σ and Γ.

For a standard Monte-Carlo method this property is lost and the Monte-Carlo approxi-
mation of a price of a financial derivative with a discontinuous payout function (e.g. Digital
Options, Trigger Products, see Section 9) is a discontinuous of the model parameters L(t0), Σ
and Γ. This results in a poor convergence of finite difference approximation of partial deriva-
tives w.r.t. these model parameters.

The method which we consider in Section 5 will retain the C∞ property of the derivative
price V (t0).

4.2 The Likelihood Ratio and Malliavin’s Calculus
Sensitivities in Monte-Carlo has been considered under generalized assumptions and mathe-
matically more rigorously in numerous papers, see [1, 2, 4, 5, 11, 12, 13, 19] and references
therein.

Broadie and Glasserman considered sensitivities in Monte-Carlo and gave the interpreta-
tion of the weight w as likelihood ratio. Fournié et al. proved under a much more generalized
setting that sensitivities are the weighted expectation of the payoff by applying Malliavin’s
calculus (stochastic calculus of variations) (the weight is referred to as Malliavin weight),
[11, 18]. Benhamou showed that the likelihood ratio is the Malliavin weight with minimal
variance, [2].

For fast calculation of sensitivities of LIBOR derivatives with smoother (continuous) pay-
offs or the class of callable LIBOR exotics see, e.g., [13, 19].

9 Aka- Greeks.
10 We abuse notation again and write dL(ti) for dx to show the link of the corresponding component of f to the

density. The integrals are Lebesgue integrals.
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5 Proxy scheme with likelihood ratio weighted Monte-Carlo

5.1 The proxy simulation scheme method
We consider two schemes K◦ and K∗ and assume that we know the conditional transition
probability densities φK◦

and φK∗
for K◦ and K∗ respectively. Under the assumption that

φK◦
(Ti+1, y, Ti, x) = 0 =⇒ φK∗

(Ti+1, y, Ti, x) = 0 ∀ i, x, y (22)

– i.e. the space spanned by the scheme K∗ is a subspace of the space spanned by the scheme
K◦

{K∗(ti, ω) |ω ∈ Ω} ⊂ {K◦(ti, ω) |ω ∈ Ω} ∀i

– we may move from realizations K◦ to K∗ through a change of measure: Instead of the
simulation scheme K∗ we use the simulation scheme K◦ and perform a change of measure by
φK∗

φK◦ . For the expectation operator we have

EQ(
f(K∗(t0),K∗(t1), . . . ,K∗(tn)|Ftk

)
= EQ(

f(K◦(t0),K◦(t1), . . . ,K◦(tn) ·
n−1∏
i=k

φK∗
(Ti,K

◦(ti);Ti+1,K
◦(ti+1))

φK◦(Ti,K◦(ti);Ti+1,K◦(ti+1))
|Ftk

) (23)

This is immediately clear using the integral representation of EQ with the above densities.
This enables us to price a derivative under the scheme K∗ by (re-)using the realizations of

the scheme K◦.

5.2 Note on the likelihood ratio method
Equation (23) is nothing more than a likelihood ratio weighted Monte-Carlo method for a
conditional expectation over one time step. The likelihood ratio is given by the distribution
ratios of the two scheme. Likelihood ratio weighted Monte-Carlo methods are common in
mathematical finance, see [12], and a popular method for calculation of sensitivities of credit
event linked products.

The additional step we take here is to consider the likelihood ratio at simulation scheme
level and use the method to generate realizations of one scheme (K◦) and change measure
(via likelihood ratio) towards realizations of another simulation scheme (K∗). The likelihood
ratio method [5] is sometimes criticized to rely on the explicit knowledge of the corresponding
probability density, which seems to limit the scope of application. Indeed, considering the con-
tinuous time SDE the large time step transition probability densities are usually not available
in closed form. However, considering the likelihood ratio method at the level of the numerical
scheme / numerical implementation (e.g. with any of the schemes of section 3) the transition
probability density easy to derive. In [16] it is shown that certain expansion of the transition
density corresponding to continuous time SDE (so called WKB expansion) is strongly conver-
gent.

5.3 Scope of application
The advantage of this approach is

• The method may be used for weak schemes, where one does have an analytic formula
φK∗

but does not have efficient method for drawing realizations of K∗.

• The method may be used to calculate the expectation with respect to a perturbed ver-
sion of the SDE while avoiding the generation of new paths. This will lead to perfectly
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smooth calculation of partial derivatives (sensitivities) even when f is discontinuous -
Section 5.5 and 9. This enables us to calculate likelihood ratio sensitivities by applying
finite differences to a pricing based on proxy scheme simulation (generic robust sensitiv-
ities)

• The method is very efficient in terms of memory consumption, thus allowing the pre-
calculation of several scenarios K∗ of perturbations of K◦.

• Existing simulation methods and implementations may be reused. The improvement of
the simulation scheme may be obtained through the adjustment of the change of measure
φK∗

φK◦ , which is a known function of the realizations.

• The implementation of a weighted Monte-Carlo framework may be reused for impor-
tance sampling.

A disadvantage of this approach is

• The method will fail to correct the transition density φ◦ if condition (22) does not hold.
Special care has to be taken to ensure that condition (22). Note that this is possible since
one is free to choose or modify the underlying proxy scheme K◦.

5.4 The Measure Absolute Continuity Condition - Singularity of Γ:
By condition (22) we require that the transition probability measure/density corresponding
to the scheme K∗ is absolutely continuous with respect to the transition probability mea-
sure/density corresponding to the scheme K◦.

5.4.1 Problem

The requirement (22) might not be fulfilled if rank(Γ) = m < n. E.g. for a single Euler-
Scheme simulation step we have from rank(Γ) = m < n that Ke(ti+1) lies in an m-
dimensional affine subspace, namely

Ke(ti+1) ∈ Ke(ti) + µK(ti,Ke(ti)) ·∆ti + D,

where D := span(Γ).
However, due to the nonlinearity of the drift µK(Ti) we have for the solution K of the SDE

(14)

K(ti+1) = K(ti) +
∫ ti+1

ti

µK(t, K(ti))dt + B · Γ ·∆U(ti).

that
{K(ti+1, ω) | ω ∈ Ω} = Rn 6⊂ Ke(ti) + µK(ti,Ke(ti)) ·∆ti + D.

Thus, in this case, the weighted Monte-Carlo method will not work if one uses an Euler-
Scheme with rank(Γ) = m < n and a target scheme with different drift or initial data, see
Figures 1 and 2.

This problem corresponds to the non-degeneracy condition imposed on the diffusion matrix
in the application of Malliavin calculus for similar applications, [2, 11].

5.4.2 Solutions

Condition (22) ensures that the calculation of an expectation with respect to the (weighted)
path of the proxy scheme may correspond to the calculation of an expectation with respect to
the target scheme. In other words: It ensures that no paths of the target scheme are left out by
the proxy scheme.
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If condition (22) does not hold, the proxy simulation scheme method will still work, but
the result will exhibit an error. In addition to a discussion of this error, we will discuss two
possible solutions that remove the error:

• Make condition (22) hold by modifying the proxy simulation scheme, see “Regulariza-
tion” below.

• Correct for the error introduced by a violated condition (22), see “Localization” below.

Localization is actually the best way to use a proxy simulation scheme in the situation of a vio-
lation of condition (22). However localization will increase (almost double) the computational
cost.

Violation of Condition (22): Surprisingly, even if condition (22) is violated the proxy simu-

lation scheme method will work. Since the Monte-Carlo weights w := φK∗ (K◦)

φK◦ (K◦)
are calculated

only on paths K◦(ω) we trivially have that φK◦
(K◦(ω)) 6= 0. Thus a division of zero problem

does not exist.
If condition (22) is violated our expectation will miss out some mass. If the two schemes

are close this missed mass will be small. If condition (22) is violated and we are in the setup of
a sensitivity calculation, i.e. if the target scheme K∗ is a perturbation of the proxy scheme K◦,
then the implications have an interesting interpretation: If the perturbation is perpendicular
to the span of K◦ we will exactly miss that mass, that contributes to the sensitivity. In that
case the proxy scheme simulation method will give a sensitivity of zero, in contrast to a true
evaluation on K∗. The reason for this is that the unperturbed model K◦ did not considered this
scenario as an admissible (possible) one.11

Regulatization: Since we are free to choose the proxy simulation scheme K◦ we may easily
modify it to make condition (22) hold. We may use one of the following methods:

• Use a full rank matrix Γ̃ for the primary simulation scheme K◦, i.e. add some extra
diffusion in the proxy scheme. See for example the method suggested in [15].

• Use a more accurate drift approximation in the primary simulation scheme, such that
{K◦(ti+1, ω) − K◦(ti, ω) | ω ∈ Ω} = Rn. This can be accomplished by considering
Euler sub steps. In [8] it is shown that, under certain conditions on the drift, performing
Euler sub steps over the interval (ti, ti+1) results in a scheme with a full rank diffusion
matrix. This required drift condition is fulfilled, e.g., for a LIBOR Market Model. See
[8].

Here we would like to emphasize an important difference to continuous time methods like
Malliavin calculus or Likelihood Ratio: The consideration of discrete schemes opens possibil-
ities that are in not present in continuous time. Not only that a discrete scheme allows us to
explicitly calculate the probability densities, we may also define an equivalent scheme with a
full rank diffusion.12

11 This might put the relevance of this kind of sensitivity into question. For example think of product having a
sensitivity with respect to the steepness of the interest rate curve evaluated in a one factor interest rate model
where all rates move parallel. Of course you might calculate the sensitivity with respect to a steepening, but the
model did not consider this effect in the pricing. So either the sensitivity is irrelevant or the original pricing model
did not capture an essential product feature.

12 The equivalent scheme defined in [8] will feature a diffusion matrix depending explicitly on the step size h of the
discretization scheme. The diffusion matrix will converge to the diffusion matrix of the original SDE for h → 0.
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Figure 1: The space {(L10(t1, ω), L11(t1, ω)) | ω ∈ Ω} spanned by the two forward rates L10, L11 at
time t1 = 1.0 for different simulation schemes using correlation 1.0. Shown are Euler scheme without
drift (red), Euler scheme with drift and a single time step (∆t = 1.0) (blue) and the (almost) true
realizations of the SDE (generated by an Euler scheme with an very fine time step). Obviously a change
of measure may not carry over one scheme into another.
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Figure 2: The space {(L10(t1, ω), L11(t1, ω)) | ω ∈ Ω} spanned by the two forward rates L10, L11

at time t1 = 1.0 for different simulation schemes and for a slight decorrelation of the processes. The
schemes shown are as in Figure 1. A change of measure may carry over one scheme into another.

Localization and Partial Proxy Simulation Schemes: The best way to handle the problem
of condition 22, is to design the scheme(s) such that condition 22 hold. Regularization of the
diffusion of the proxy scheme is one example. Another possibility is to split the target scheme
into two parts. One part for which condition 22 holds and a residual part for which we use
direct simulation. This splitting is called localization and we will briefly discuss it in 22.

A more refined way to do such a splitting is do define a partial proxy simulation scheme
that mixes likelihood ratio weightening with direct simulation, see [9].
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5.5 Proxy scheme method for a target scheme with perturbed initial con-
ditions

The method may be applied to reuse the sample-paths of a scheme as realizations of the same
scheme with perturbed initial conditions. This will provide us with a full generic and robust
methodology for calculating partial derivatives of option prices13 in a Monte Carlo framework.
See Section 9.

We consider three simulation schemes

K◦ The proxy scheme, i.e. the scheme that generates the realizations.

K∗ A target scheme which complies with condition (22).

K∗∗ A version of K∗ with perturbed initial conditions, i.e. the SDE of K∗∗ is that of K∗, but
the initial conditions are perturbed.

In general condition (22) will not hold for the pair (K◦,K∗∗). The problem is two fold:
First, the initial condition is (assumed to be) non-stochastic and since K◦ and K∗∗ do not

have identical initial conditions the transition probability of K◦ is zero if that of K∗∗ is not:

φ(t0,K∗∗
0 ; t1,K∗∗

1 ) > 0 ⇒ φ(t0,K◦
0 ; t1,K◦

1 ) = 0.

Thus (22) is violates and we may not correct the realizations of K◦ by a likelihood ratio such
that its distribution matches that of K∗∗.

Second, if the realizations of K◦(ti) and K∗(ti) for i > 0 span a low dimensional subspace
of Rn it might happen that K∗∗(ti) has realizations outside that subspace. This is essentially
the problem discussed in Section (5.4) and it may be avoided as discussed there (e.g. modify
K◦ such that K◦(ti) spans the whole Rn for i > 0. However it should be noted that if a
perturbation K∗∗ of K∗ is such that the span of K∗∗(ti) is not a subset of the span of K∗(ti),
then this perturbation shouldn’t even be considered, since one is measuring the movement with
respect to a parameter that is assumed to be constant in the original model.

For the application of calculating option prices under the perturbed scheme K∗∗ the first
problem may be usually avoided: Since K∗∗(t0) is non-stochastic the option payoff in general
depends only on the future realizations K∗∗(ti). Thus, considering the pricing formula (15),
K∗∗(t0) enters only in the numéraire, and there in the deterministic part of the discounting.
We will thus consider the adjusted scheme K∗∗◦ defined by

K∗∗◦(t0) := K◦(t0), K∗∗◦(ti) := K∗∗(ti), i > 0,

calculate option prices under the scheme K∗∗◦ (to be precise, under the proxy scheme pair
(K◦,K∗∗◦)) and adjust the price for the false discounting, i.e. by the factor N∗∗(t0)

N◦(t0)
, where

N∗∗(t0) is the numéraire calculate from K∗∗(t0) and N◦(t0) is the numéraire calculate from
K◦(t0).

5.6 Localization
Using Likelihood Ratio weighting or Malliavin weighting to calculate sensitivities of expec-
tations of smooth payouts usually results in a slight increase of the Monte-Carlo variance for
the sensitivity. In the case of smooth payouts the finite difference methods performs slightly
better. This increase of Monte Carlo variance also occurs for finite differences applied to proxy
simulation and the effect is even visible for non-smooth payouts if the shift size of the finite
difference is very large, see Figures 6 and 7.

While one may usually live with the slightly larger Monte-Carlo error an improvement may
be achieved by the localization technique.

13 Also known as sensitivities.
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Localization is also possible for proxy scheme simulation. The extension is straight for-
ward: Let f denote the payout function given as a function of the realizations of a simulation
scheme. Then instead of using (1)

EQ(f(K∗) | Ft) = EQ(f(K◦) · w | Ft)

we might use a localization function g on the payout

f = g · f + (1− g) · f

and split the expectation operator into one part evaluated using direct simulation of the scheme
K∗ and another part using proxy scheme simulation (K◦,K∗), i.e.

EQ(f(K∗) | Ft) = EQ((g · f)(K◦) · w | Ft) + EQ(((1− g) · f)(K∗) | Ft).

The localization function is chosen such that g is close to 1 in a neighborhood of the disconti-
nuities of f and close to zero elsewhere.14

Implementation

Since the localization function depends on the properties of f only, localization may be imple-
mented as part of the pricing code, switching from paths generated by a proxy scheme K◦ to
paths generated by the target scheme K∗.

For a more detailed discussion on proxy simulation schemes with localization see [7].

14 A candidate for the localization function would be g(x) := exp(−((x− c1)/c2)2).
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6 Benchmark Model and Product Specification
For numerical investigation of the proxy scheme method we will consider the following setting:

Proxy Scheme

As proxy scheme we will use the more than inaccurate zero drift scheme

Kzd(ti+1) = Kzd(ti) + Σ · Γ · (U(ti+1)− U(ti)),

in other word we completely neglect the drift and let the likelihood ratio correct for it - a rather
strong test.

LIBOR Market Model

We generate Monte-Carlo path for a LIBOR Market Model for semiannual rates L(Ti, Ti+1)
with Ti+j − Tj = 0.5. We will simulate 20 rates over 10 years (t ∈ [0, 10]) and use large
simulation time steps of ti+1 − ti = 0.5.

The instantaneous volatility used is σ = 50%, the initial curve is Li = 10% and the
correlation is exponentially decaying with a rate of 0.8. The rather high volatility will generate
larger Monte-Carlo errors.

Benchmark Products

We benchmark drift convergence though the pricing of the 19 Zero-Bonds P (Ti), i = 1, . . . , 19
with maturities Ti = 0.5 ∗ i ranging from 0.5 to 9.5.

To benchmark sensitivity convergence we calculate digital caplets (strike 10%) and two
one-out-of-three Auto Caps with semiannual periods, the first one with fixings {2.0, 3.0, 4.0}
and strikes {12%, 10%, 8%}, the second one with fixings {4.0, 6.0, 8.0} and strikes
{10%, 10%, 10%}. The trigger effect of the two Auto Caps is strong enough to challenge the
calculation of Monte-Carlo sensitivities. The digital caplets are the prototypical benchmark
products for sensitivities in Monte-Carlo due to their payoff being a Heaviside function.

Numerics

Beside this we use rather simple tools and techniques: The random number generator is a
Mersenne Twister with Box-Muller transform. We conducted hundreds of Monte-Carlos ex-
periments each with 10,000 to 1,000,000 paths. Calculations were performed on 64 bit proces-
sors using 64 bit operating systems15 hosting a Java 1.5 Virtual Machine.

Our numerical examples illustrate the difference between classical direct simulation and
proxy scheme with likelihood ratio simulation. Both methods exhibit residual Monte-Carlo
errors with are larger than usual due to the slightly exaggerated date used (high volatility,
higher decorrelation). Improving the numerics (e.g. random numbers, choice of proxy scheme,
variance reduction, etc.) will greatly improve the overall level of convergence.

15 LinuX and Mac OS X
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7 Benchmark application (I): High accuracy drift approxi-
mation for the LIBOR Market Model

7.1 Numerical Results
Pricing of Zero Bonds (measuring the drift error)

The price of the zero bond directly measures the drift error (the price is invariant of Σ and Γ).
To assess the drift error we compare the Monte-Carlo pricing of zero bonds with analytical
prices.

To show that the proxy scheme method actually works we compare direct simulations (non-
weighted Monte-Carlo) with proxy scheme simulations with likelihood ratio weighted Monte-
Carlo.

As proxy scheme we use the more than inaccurate zero drift scheme

Kzd(ti+1) = Kzd(ti) + Σ · Γ · (U(ti+1)− U(ti)), (24)

in other word we completely neglect the drift and let the likelihood ratio correct for it - a rather
strong test.

We calculate Bond prices P (Ti) for Ti ∈ {0.5, 1.0, . . . , 9.5} and measure the L1-distance
of the Bond price curve to the analytic solution. In other words out error measure is

error =
19∑

i=1

|P simulation(Ti)− P analytic(Ti)|. (25)

We perform several Monte-Carlo simulation an calculate the mean and the standard deviation
of the error measure (25). These are shown in Table 1. Figure 3 graphically compares the
distributions of the error measure of our Monte-Carlo tests.

The results clearly show that not only the proxy scheme method works to generate similar
Bond prices that the corresponding direct simulation, it even outperforms the direct simulation.

7.2 Higher accuracy drift approximations: Expansion for the transition
probability of the LIBOR Market Model

Since the likelihood ratio-weighted Monte-Carlo method uses only the transition probability
φK∗

of the secondary scheme K∗ we may use high accurate approximations of the transition
probability φK of K to correct the primary simulation scheme K◦. The work of [16] gives an
expansion of the transition probability for general Itô processes. We apply this to the LIBOR
Market Model process in [10].
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Direct Simulation Proxy Scheme Method
Scheme Bond Error (in bp) Scheme Bond Error (in bp)

Kzd 175.69347 ±6.29436

Ke 6.4343 ±2.74023 (Kzd, Ke) 5.78276 ±2.56599

Kpc 5.68393 ±2.2745

Kta 5.68384 ±2.27453 (Kzd, Kta) 4.83355 ±1.96074

Table 1: Bond Errors.
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Figure 3: Distribution of Monte-Carlo bond price errors for direct simulation schemes and proxy simu-
lation scheme with likelihood ratio. A simulation scheme performs better than the other if the distribution
is further to the left than the other schemes distribution.
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8 Benchmark application (II): Process oriented importance
sampling

8.1 Importance Sampling by Changing the Proxy Scheme
We consider a call spread with the following payout:

V (Tk) :=


0 for L(Tk, Tk+1;Tk) < K1

L(Tk, Tk+1;Tk)−K1 for K1 < L(Tk, Tk+1;Tk) < K2

K2 −K1 for K1 < L(Tk, Tk+1;Tk) < K2

with strikes significantly larger than the current forward rate, i.e. K2 > K1 >>
L(Tk, Tk+1;T0), i.e. the option if far out-of-the money.

Of course, the simulation paths ωj for which L(Tk, Tk+1;Tk, ωj) < K1 are just wasted,
because they do not contribute to the payout. In order to do an importance sampling we simply
modify the drift of the underlying proxy scheme by setting of the k-th rate L(Tk, Tk+1;Tk) to

µ◦k(t) :=
log K1 − log(L(Tk, Tk+1;T0))

Tk
.

This drift will shift of the mean of L(Tk, Tk+1;Tk) to K1. The drifts of all other rates are
unchanged.

Since a proxy simulation scheme would also correct for changes in the volatility of the
proxy process we might choose an optimized variance of the terminal distribution.

8.2 Numerical Results
Figure 4 shows the Monte-Carlo pricing of the call spread using an Euler scheme with the true
LIBOR Market Model drift and an Proxy Simulation Scheme (where both schemes are Euler
schemes) having an artificially modified drift.

Importance Sampling using Proxy Simulation Scheme
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Proxy Scheme with Importance Adjusted Drift
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Figure 4: Monte-Carlo prices using a standard Euler-Scheme with the standard LIBOR Market Model
drift (red) and a Proxy Simulation Scheme with an artificially adjusted drift (green). The drift of the proxy
scheme has been increased such that the expectation of the forward rate falls into the region of the strike
of the option. The example calculated is L(Tk, Tk+1; T0) = 10%, K1 = 20%, K2 = 25%.
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9 Benchmark application (III): Robust sensitivities (deriva-
tives) of product with discontinuous payouts

9.1 Sensitivities in Monte-Carlo
Trigger type products feature a payout function f which is a discontinuous function of the
realizations L(t0, ω), L(t1, ω), . . . , L(tk, ω) on every fixed sample path ω. Thus (standard)
Monte-Carlo approximation of the expectation (26) of f

V (t0) = N(0) · 1
m

m∑
i=1

f(tk, L(t0, ωi), L(t1, ωi), . . . , L(tk, ωi)) (26)

for sample path ω1, . . . , ωn drawn according to (11) is the sum of remains a discontinuous
function of the model parameters (as a sum of discontinuous functions). This dramatically
reduces the convergence rate of sensitives when calculated as finite differences

V (t0;X + h)− V (t0;X)
h

(27)

where X denotes any model parameter, V (t0;X) the Monte-Carlo price with respect to the
simulation scheme with parameter X .

Instead we will consider three simulations scheme: K◦ (the proxy scheme), K∗,X (the tar-
get scheme, which may be identical to the proxy scheme in this application) and K∗,X+h (the
target scheme with perturbed model parameters). We will then calculate the option price under
(K◦,K∗,X) and (K◦,K∗,X+h) to calculate the finite difference (27). This corresponds to nu-
merical differentiation of the likelihood ratio, which is a C∞ function of the model parameter
X .

9.2 Numerical Results
Sensitivities of Digital Caplet and Auto Cap

We benchmark the method through the calculation of delta and gamma for digital caplets and
auto caps. An digital caplet with fixing date Ti and payment date Ti+1 pays

1 if L(Ti, Ti+1;Ti) > Si

0 else

}
· (Ti+1 − Ti) at time Ti+1.

It is the simplest product with a discontinuous payoff. An auto cap with fixing dates T1, ..., Tk,
payment dates T2, ..., Tk+1, strikes S1, ..., Sk and maximum number of exercised nmax pays

max(L(Ti, Ti+1;Ti)− Si , 0) · (Ti+1 − Ti) at time Ti+1

for the first nmax times Ti for which expression (9.2) is positive. This payout is a discontinuous
function of the model parameters since a slight change in model parameters may suppress a
later payment (which might be large) in favor for a small earlier payment (which was non-
positive before the change).
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Benchmark results

We consider the benchmark products above and calculate price, delta and gamma using finite
differences. We compare

• Ke - direct simulation with Euler scheme - with

• (Kzd,Ke) - proxy simulation with zero-drift scheme as proxy scheme and Euler scheme
as target scheme.

Price convergence
The proxy simulation (Kzd,Ke) (using zero drift in the generation of the realizations)

shows the same Monte-Carlo convergence for pricing of the two Auto Caps considered as
the direct simulation of Ke. The prices generated by the proxy scheme with likelihood ratio
are only slightly different from the prices generated by direct simulation - the difference is
negligible compared to the Monte-Carlo error. See Figure 5.
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Figure 5: Convergence of Auto Cap Monte-Carlo price using direct simulation (red) and proxy scheme
simulation with likelihood ratio (green).
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Sensitivity convergence and shift dependence
The finite difference calculation of first and second order partial derivatives (delta and gamma)
shows a strong dependence on the shift size when the direct simulation scheme is used. The
results for proxy scheme simulation are independent on the shift size. For small shifts the
proxy scheme sensitivities calculated with a proxy scheme method clearly outperform the di-
rect simulation scheme sensitivities (Table 2, first row). The remaining variance in the proxy
scheme sensitivities is the Monte-Carlo error. An increase of the number of paths by a factor
of 10 reduces the error by a factor of 1√

10
≈ 1

3 (Table 2). For large shifts the sensitivities
calculated by shifting the direct simulation stabilize and the Monte-Carlo error of the proxy
scheme simulation turns out to be larger by a factor of 2. However large shifts are undesirable,
because higher order effects lead to deviation of the mean - theses are likely to be larger than
the Monte-Carlo error. This effect is clearly seen for the digital caplet with maturity 0.5, when
compared to the analytic value, see Figure 6. For shifts below 0.5% the delta obtained by
classical simulation exhibits unacceptable large variances and for shifts above 0.5% the mean
of the delta (obtained from repeated Monte-Carlo simulation) exhibits an error larger than one
standard deviation. See also Figure 7 and Table 2.

Even for very large number of paths the shifts of a direct simulation scheme may produce
unexpected large changes. Figure 7 shows the Monte-Carlo convergence of delta and gamma
for six different shift size. The deviations of the direct simulation scheme are rare, but unpre-
dictable and large.
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Digital Caplet gamma (maturity 2.5, 10000 paths)
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0 25 50 75 100

shift in basis points

-100,0%

-75,0%

-50,0%

-25,0%

0,0%

25,0%

50,0%

75,0%

100,0%

de
lta

Figure 6: Dependence of the Digital Caplet delta (top row) and gamma (bottom row) on the shift size
of the finite difference approximation. Finite difference is applied to a direct simulation (red) and to an
proxy scheme simulation (green). Each dot corresponds to one Monte-Carlo simulation with the stated
number of paths. The red and green corridors represent the corresponding standard deviation.
The proxy scheme simulation shows no dependence on the shift size while given similar expected values
for the sensitivity.
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Delta and Gamma for Auto Cap 1
Shift range Delta (in % per 1% shift) Gamma (in % per 10% shift)

(in bp) Direct Sim Proxy Scheme Direct Sim Proxy Scheme
10000 Path

0− 10 0.26% ±0.11% 0.26% ±0.04% 56.63% ±3827% −1.04% ±4.07%
10− 20 0.26% ±0.04% 0.26% ±0.04% 0.07% ±44.00% −1.23% ±4.04%
20− 30 0.26% ±0.03% 0.26% ±0.04% −1.04% ±21.61% −1.06% ±3.94%
30− 40 0.26% ±0.03% 0.26% ±0.04% −0.39% ±10.83% −1.08% ±4.00%
40− 50 0.26% ±0.03% 0.26% ±0.04% −1.21% ±7.34% −1.17% ±4.15%
50− 60 0.26% ±0.03% 0.26% ±0.04% −1.80% ±5.63% −1.28% ±4.09%
60− 70 0.26% ±0.02% 0.26% ±0.04% −1.37% ±4.31% −1.15% ±4.04%
70− 80 0.26% ±0.02% 0.26% ±0.04% −1.53% ±3.37% −1.18% ±4.21%
80− 90 0.26% ±0.02% 0.26% ±0.04% −1.37% ±2.71% −1.34% ±4.18%
90− 100 0.26% ±0.02% 0.26% ±0.05% −1.39% ±2.63% −1.63% ±3.91%

100000 Path
0− 10 0.27% ±0.03% 0.27% ±0.01% −379.30% ±2771% −1.39% ±1.35%
10− 20 0.27% ±0.01% 0.27% ±0.01% −1.39% ±13.45% −1.62% ±1.23%
20− 30 0.27% ±0.01% 0.27% ±0.01% −1.65% ±5.74% −1.29% ±1.28%
30− 40 0.27% ±0.01% 0.27% ±0.01% −2.02% ±3.07% −1.43% ±1.24%
40− 50 0.27% ±0.01% 0.27% ±0.01% −1.47% ±2.25% −1.53% ±1.29%
50− 60 0.27% ±0.01% 0.27% ±0.01% −1.39% ±1.78% −1.27% ±1.32%
60− 70 0.27% ±0.01% 0.26% ±0.01% −1.53% ±1.20% −1.83% ±1.33%
70− 80 0.27% ±0.01% 0.27% ±0.01% −1.54% ±1.03% −1.41% ±1.19%
80− 90 0.26% ±0.00% 0.26% ±0.01% −1.58% ±0.83% −1.65% ±1.40%
90− 100 0.26% ±0.01% 0.26% ±0.02% −1.51% ±0.75% −1.40% ±1.51%

Delta and Gamma for Auto Cap 2
Shift range Delta (in % per 1% shift) Gamma (in % per 10% shift)

(in bp) Direct Sim Proxy Scheme Direct Sim Proxy Scheme
10000 Path

0− 5 0.08% ±2.81% 0.21% ±0.19% −9610% ±193541% −1.78% ±10.15%
5− 10 0.22% ±0.07% 0.21% ±0.08% −4.06% ±130.33% −2.22% ±6.77%
10− 15 0.22% ±0.04% 0.22% ±0.07% 8.08% ±91.86% −2.39% ±7.35%
15− 20 0.21% ±0.05% 0.22% ±0.07% −2.28% ±48.23% −2.49% ±7.47%
20− 25 0.22% ±0.08% 0.22% ±0.12% −1.43% ±22.79% −1.89% ±16.65%
25− 30 0.21% ±0.03% 0.21% ±0.06% −1.62% ±20.11% −2.70% ±6.33%
30− 35 0.22% ±0.09% 0.22% ±0.12% −2.50% ±15.02% −2.42% ±8.48%
35− 40 0.21% ±0.04% 0.22% ±0.07% −2.25% ±11.64% −2.51% ±6.95%
40− 45 0.21% ±0.03% 0.22% ±0.07% −2.38% ±10.23% −2.40% ±7.22%
45− 50 0.21% ±0.03% 0.20% ±0.06% −2.88% ±8.47% −3.12% ±6.97%

100000 Path
0− 5 0.22% ±0.04% 0.21% ±0.02% 579% ±4050% −2.27% ±2.17%
5− 10 0.21% ±0.02% 0.21% ±0.02% −0.24% ±37.11% −2.61% ±2.04%
10− 15 0.21% ±0.02% 0.22% ±0.02% −5.78% ±18.31% −2.48% ±2.19%
15− 20 0.21% ±0.01% 0.21% ±0.02% −2.81% ±9.97% −2.26% ±2.33%
20− 25 0.21% ±0.01% 0.21% ±0.02% −3.52% ±9.18% −2.48% ±2.72%
25− 30 0.21% ±0.01% 0.21% ±0.03% −2.33% ±5.18% −2.31% ±2.54%
30− 35 0.21% ±0.01% 0.21% ±0.02% −2.36% ±4.47% −2.99% ±2.13%
35− 40 0.21% ±0.02% 0.21% ±0.02% −3.24% ±5.47% −2.80% ±1.91%
40− 45 0.21% ±0.01% 0.20% ±0.02% −2.91% ±2.68% −2.39% ±1.98%
45− 50 0.21% ±0.01% 0.21% ±0.02% −1.79% ±2.57% −2.09% ±2.81%

Table 2: Mean an standard deviation corresponding to the simulations in Figure 7 and 8.
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Auto Cap 1
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Auto Cap gamma (product 2, 10000 paths)
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Auto Cap gamma (product 2, 100000 paths)
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Figure 7: Dependence of the Auto Cap Monte-Carlo sensitivity on the shift size of the finite difference
approximation using direct simulation (red) and proxy scheme simulation with likelihood ratio (green).
Each dot corresponds to one Monte-Carlo simulation with the stated number of paths. The red and green
corridors represent the corresponding standard deviation.
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Auto Cap gamma curve
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Auto Cap gamma curve
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Figure 8: Convergence of Auto Cap Monte-Carlo delta (upper row) and gamma (lower row) us-
ing direct simulation (red) and proxy scheme simulation with likelihood ratio (green). To cal-
culate delta we use finite differences with different shifts h of the initial interest rates, h ∈
{0.0001, 0.0005, 0.0010, 0.0020, 0.0050, 0.0100}. Shown are six red and six green curves. Using direct
simulation the shift size h leads to different results even for high number of paths. Using proxy scheme
simulation the shifts matters only though higher order effects in the likelihood ratios. The graphs on the
left correspond to Auto Cap 1, the graphs on the right to Auto Cap 2.
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10 Conclusion
Using Monte-Carlo simulation for the calculation of prices (expectations) and Greeks (deriva-
tives of expectations w.r.t. model parameters) involves three sources of errors:

• The time discretization of the time-continuous SDE introduces the time discretization
error.

• The approximation of the expectation operator by a finite sum introduces the Monte-
Carlo error.

• The calculation of derivatives of expectations of non-smooth functions (payoffs) by finite
differences heavily depends on the shift size and the Monte-Carlo error blows up as the
shift size tends to zero. Thus finite differences either introduce errors stemming from
higher order effects (for large shifts) or are unreliable with extremely large Monte-Carlo
errors (for small shifts).

The use of a likelihood ratio weighted proxy scheme simulation enables us to reduce the
time discretization error and make finite differences reliable and independent of the shift size.
The remaining error for pricing and Greeks is a mostly modest Monte-Carlo error. Since the
Monte-Carlo error may be measured and thus controlled quite accurately by

1
n

n∑
i=1

(f(K◦(T, ωi))−m)2 · wi, where m :=
1
n

n∑
i=1

f(K◦(T, ωi)) · wi,

where

wi :=
φK∗

(K◦(T, ωi))
φK◦(K◦(T, ωi))

for pricing and wi :=
∂φK∗

∂X (K◦)
φK◦(K◦)

for Greeks.

(The implementation replaces the partial derivative by finite differences).
The use of the proxy scheme may increase the Monte-Carlo error a bit if the likelihood

ratios are large. In general it is possible to choose the proxy scheme such that

max
{φ∗

φ◦
,
φ◦

φ∗
}

is small (i.e. close to 1).

The use of a proxy scheme allows to apply finite differences directly to the Monte-Carlo
implementation (bumping the model) while retaining the robustness and accuracy a likelihood
ratio method. The likelihood ratios are calculated numerically from the transition probability
of the numerical scheme (which is in general available in closed form). In this sense the method
is model independent.
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List of Symbols

Symbol Meaning

|| · ||C0 Sup norm. ||f(x)||C0 = supx |f(x)|

|| · ||C1 C1-norm. ||f(x)||C1 = ||f(x)||C0+|| ∂
∂xf(x)||C0

EQ Expectation operator with respect to the measure
Q.

Tj , i = 0, 1, 2, . . . Tenor structure (discretisation of interest rate
curve into forward rates).

L = (L1, . . . , Ln) Vector of processes of forward rates Li with pe-
riod [Ti, Ti+1], following a LIBOR Market Model.

ti, i, 0, 1, 2, . . . Discretisation of simulation time.

K Logarithm of L.

K◦(ti) Realizations of the primary simulation scheme
(the proxy scheme). K◦(ti) is an approximation
to K(ti).

K∗(ti) Realizations of the secondary simulation scheme
(the target scheme). K∗(ti) may be either an im-
proved approximation of K(ti) or an perturbation
of K◦(ti).

φK◦
Transition probability density of K◦.

φK∗
Transition probability density of K∗. φK∗

φK◦ is the
Monte-Carlo weight used to correct the scheme
K◦ towards K∗.

Ke The Euler scheme.

Kzd The zero drift scheme (Euler scheme with ne-
glected drift).

Kpc The predictor-corrector scheme.

Kta The trapezoidal average drift scheme.
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