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Monte Carlo Pricing

Review and Notation
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Monte Carlo Pricing: Review and Notation

Monte-Carlo Simulation:
Given a stochastic process for some model primitives X = (X, ..., X;), for example an Ité process
defined on some filtered probability space (Q, P, {¥:})

dX = pdt + cdW()  X(0) = X,.

Define a time discretization 0 = 1y < t; < ... and apply a time discretization scheme, for example
an Euler scheme

X(tix1) = X(@) + u@)ALG + o ((AW()  X(tp) = Xp.

x A
Draw some simulation paths wq, w»,...,w,, i.e. draw pe o
random numbers AW(t;, w;) generating realizations Y\v/ng
X(tl+1, (J)J) W,
- ] w4
Monte-Carlo Pricing: — T T T T >

Assume that the Numéraire N(r) is a function of X and we have calculated N(¢;, w;). Assume that
the time T = 1, value V() of a derivative product is a known function of X(z;). Then calculate V(z;)
from X(#;) and approximate the expectation operator

n V ’ .
V(tg) V(tk)| ) ~ Z (lwj) 1

— B(—K :
N(1p) (N(tk) jle(tk,wj) n_
= p(w;)
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Monte Carlo Pricing: Review and Notation

Examples:

Black-Scholes Model for a Stock

X;:=8 dS = uSdr+oSdwW stock
X>:=B dB = rBdt risk free money market account

Choice of Numéraire N := B =  pricing measure dynamics: r = p.

LIBOR Market Model

X, :=L;=LT;, T;;1) dL; = y;L;dt + o;L;,dW; forward rate for [T}, T;,1]
fori=0,...,m—1. -
Choice of Numéraire N := P(T;,) =  pricing measure dynamics: u(t) = = 3, : l(t)('laﬁc(st)La(lt()t))pj’l(‘
I>j+1 L
[<m—1

where P(T;,) denotes the zero coupon bond with maturity 7.
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Monte Carlo Pricing: Review and Notation

Some Key Problems in Modeling and Monte-Carlo Pricing:

e Calibration: In contrast to “implied modeling” (Dupire) which is usually done in connection
with a lattice implementation (PDE / tree), the calibration of process parameters is difficult
(complex inverse problem).
= See, e.g., the talk of Piterbarg.

e Sensitivities: The Monte-Carlo calculation of a sensitivity, i.e. the partial derivative of a price,
e.g. with finite differences, has short comings. Monte-Carlo pricing suffers from poor resolu-
tion of local properties, thus sensitivities of discontinuous payouts tend to be inaccurate.
= See, e.g., likelihood ratio method, pathwise method, etc. [GI0O3] and proxy simulation
scheme method [FKO035].

e Pricing of Bermudan Options:
Subject of this talk
= See, e.g., references [BG97], [FO6], [LSO01], [Pi03], [FO5], [FOB6].

Risk Quant Congress 2006 USA - [2-13 July 2006 - New York 6 © 2006 Christian Fries - www.christian-fries.de



http://www.christian-fries.de
http://www.christian-fries.de

Monte Carlo Pricing of
Bermudan Options



http://www.christian-fries.de
http://www.christian-fries.de

Monte Carlo Pricing of Bermudan Options

Bermudan Option on Underlyings U(T))

Given multiple exercise dates T; < T, < T3 < ... < T, at each time T; the holder has the choice
between

[exercise] - choose the value U(T;) of some underlying financial product

[hold] - choose to exercise later, ie. an Bermudan Option with exercise
dates {T;,1,..., Ty}

— Option on option ... on option.

r,; denote the value process of a
Bermudan option with exercise dates {T}, ..., T,}.

Value of Bermudan Option according to optimal exercise

T, (T} = max{U(Ty) ,| Vir, ,

V{ T;,.... T\t ) — AU L) ot VT q,...,

where

Conditional expectation at some future time

Vir 73T = N(T)) - gQ" (V{Ti+1 ----- T} (Tit1)

)
N(Ti41) ' l
T, conditioned on the time 7; states (Fr,).

i+15e05

is the value of the option V|7, |

.....

= Requires the calculation of a conditional expectation (difficult in Monte Carlo).
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Monte Carlo Pricing of Bermudan Options

Bermudan Option on Underlyings U(T))

Given multiple exercise dates T; < T, < T3 < ... < T, at each time T; the holder has the choice
between

[exercise] - choose the value U(T;) of some underlying financial product
[hold] - choose to exercise later, ie. an Bermudan Option with exercise
dates {T;,1,..., Ty}
— Option on option ... on option. W(t,w) A
Let Vi, .1, denote the value process of a
Bermudan option with exercise dates {T}, ..., T,}. . 3
| | | | 0 T, Mt
Value of Bermudan Option according to optimal exercise PR Y= (ot easible)
Vir,,...T, (T = max{U(T) | Vi1, ... T (T},
where
Conditional expectation at some future time
N (it T Tiv1)
Vir. T;) = N(T;) - E¥ Lo n .
(Tiy 1, T} (i) = N(T) ( N '7’T,

is the value of the option V|7, .  7,) conditioned on the time 7; states (¥7,).

.....

= Requires the calculation of a conditional expectation (difficult in Monte Carlo).
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Monte Carlo Pricing of Bermudan Options

Value of Bermudan Option

Consider relative prices: V := % and U := % The (Numéraire-relative) value of the Bermudan

option is

Vir,.. 0 (T = max{OTy), Vir,,, 7T,

where

~ N -~
ViTit T () = EY Vit 1) Tiv1) | 1)

is the (Numéraire-relative) value of the option V{TH-I,---,Tn} conditioned on the time 7; states (¥7,).
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Monte Carlo Pricing of Bermudan Options

Value of Bermudan Option: Optimal Stopping Formulation

For a given path w € Q let

.....

exercise criteria
T(w) is the optimal admissible exercise time on a given path w.
Note: 7 is a stopping time, i.e. {T' < Ty} € Fr.

This allows to express the Bermudan option value as a single (unconditioned) expectation:

Vir,...1,)(To) = EXO () | F7,,).

Here U(1)[w] := U(r(w), w) is the value realized on path w by exercising (optimal) in r(w).

This is just an equivalent formulation. It remains to calculate the stopping time through the optimal
exercise criteria.

Next: Calculate the random variable U(r) directly. ~— Backward Algorithm.
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Monte Carlo Pricing of Bermudan Options

Value of Bermudan Option: The Backward Algorithm
Recursively define the values V; by induction backward in time:
Induction start: If the Bermudan is not exercised on the last exercise date T, it's value is O:

Vie1 =0

Inductionstepi+1 —ifori=n,..., 1.

~

Vi 0@ < BV IFT)
Vi=1{
U(T;) else.

Clearly, the value V; coincides with the optimal exercise value U(r) and we have

n
- - ~ 1
Vir,.. 7(To) = EXVy | Fr,) =~ Zvl(“’f')'ﬁ'
=1

With the backward algorithm, the whole problem of pricing Bermudan problems has been moved
to the estimation of the exercise criteria.
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Monte Carlo Pricing of Bermudan Options

Value of Bermudan Option: The Backward Algorithm
Recursively define the values V; by induction backward in time:

Induction start: If the Bermudan is not exercised on the last exercise date T, it's value is 0:
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Inductionstepi+1 —ifori=n,...,1: The difficulty to calculate
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U(T;) else. of the exercise criteria
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- - ~ 1
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Monte Carlo Pricing of Bermudan Options

Value of Bermudan Option: The Backward Algorithm
Recursively define the values V; by induction backward in time:

Induction start: If the Bermudan is not exercised on the last exercise date T, it's value is 0:

Vie1 =0
Inductionstepi+1 —ifori=n,...,1: The difficulty to calculate
- o~ - conditional expectation is how
(Vi | i 0@ < EUVi 177 . P >
= restricted to the determination
U(T;) else. of the exercise criteria

Clearly, the value V; coincides with the optimal exercise value U(r) and we have

- - - 1
Viry,..T(To) = EXVy | Fr,) ~ Vilwj)-—. (unconditional expectation)

n
J=1

With the backward algorithm, the whole problem of pricing Bermudan problems has been moved
to the estimation of the exercise criteria.
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Monte Carlo Pricing of Bermudan Options

Problem: How to Estimate the Exercise Criteria:

The true exercise criteria is

Vit 1) (T < Uy e EQ(V{T,-H T (L) | TT,-) < U(Ty)

----------

Solution: Tools for Bermudan Pricing in Monte Carlo:

e Optimization of Exercise Criteria (Andersen [An99])
Choose some parametrized exercise criteria. Maximize the option price as a function of the

parameters. Note: Suboptimal exercise criteria will lead to smaller option value. See refer-
ences.

e Estimation of Conditional Expectation - Subject of this talk, see [F05].

— Binning (see also [F06]).
— Least-Square Regression (Carriere [Ca96]aka. Longstaff-Schwarz [LS01], see also [CLPO-

e Dual Method / Primal-Dual Method / Dual Problem (Davis & Karatzas [DK94], Rogers 2001
[Ro01])

Optimizes the stopping time. See references.
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Monte-Carlo Conditional Expectation Estimators

Full Re-simulation

Full re-simulation is not feasible.
The computational cost grow exponentially in the number of exercise dates.
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Monte-Carlo Conditional Expectation Estimators

Perfect Foresight

Estimate the expectation by taking the path on which we are on:

EY (V{Ti

P(wq}) = 0.5 Example:

P({wz}) = 0.5 Optimal (admissible) exercise strategy:
4 T(w1) = T(w2) = T2
Average value realized =0.5-1+05°-4=25
(optimal exercise)

2 1 Perfect foresight exercise strategy:

T(w1) =T2 ; T(w2) =T

Average value realized=05-2+05+4=3
TO T1 T2 (super-optimal exercise)

Perfect foresight largely over-estimates the option value. (More on this later).
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Monte-Carlo Conditional Expectation Estimators

Conditional Expectation as Functional Dependence

The filtration Fr, represents the information known up to 7. If we consider our Monte-Carlo
simulation of our model primitives X, we see that all that is known up to T is the finite set of
random variables

Z = (X(tp), X(t1), X(12), ..., X(T1))

The conditional expectation is a function of the #r,-measurable random variable Z:

Y (V1 | F1,) = EY (W(T2) 12) = @)

Depending on the product, the expectation will depend only on a very few random variables. E.g.
if the product is not path dependent it will depend only on

7 = X(Ty).

With this notation the backward algorithm’s induction step i + 1 — i becomes:

~

. Vier IO < f(Z(Ty)
l U(T;) else.

Estimation of Exercise Criteria < Estimation of Cond. Expectation < Estimation of z — f(z)
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Monte-Carlo Conditional Expectation Estimators

lllustration
~ Continuation versus Exercise Value (pathwise)
V(T2) 2,5 -
2,2 7 ~
S (Z(w), VT, ; w)))
T 2,0 - l l =
S 18- Each dot represents a pair\ ’ E(V(TZ) | Z) = f(2)
9 of the predictor and the . .
® 1,5 realized value.
o 1,2
>
§ 10 -
Cc*')i 0,8 - et TN
5 05- U(T))
O .. (the valug of the underlying)
= 02"
O
o 0,0 -
-0,2 -

-0,2 - 0/ 9,0/ 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,97
Exercise boundary Predictor Value upon Exercise
given by the intersection
of the two curves

Remark: One method to estimate the conditional expectation is to estimate the function z — f(z)
as a regression polynomial.
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Monte-Carlo Conditional Expectation Estimators
Binning

Estimate the expectation by taking paths which are "nearby”":

EQ (Vi TisD) 1 Z2) (0] ~ EQ(Vir,, 14(TieD) | Z € UdZ()),

where U(Z(w)) := {z | IZ(w) — Z|| < €} (set of paths which are near w).
Instead of defining a bin U(Z(w)) for each path w it is more efficient to start with a partition of Z(Q2):

Let Z(Q) = | Z;, with Z; disjoint. The binning approximation of the conditional expectation is
k

E¥ (Vizy ... 1l Tis)) | Z) @] ~ EX(Vir,, 1) (Tix)) | Z€Z;) =2 Hy,

where Z; denote the set with Z(w) € Z;.

0 >
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Monte-Carlo Conditional Expectation Estimators
Binning

Let Z(Q) = U, Z;, with Z; disjoint. Estimate the expectation by taking paths which are "nearby™":

EY(Vir,,,,.. 1T 1 Z) (0] ~ EY(Vig,, . 10Tie)) | Z € Z) =2 Hy,

where Z; denote the set with Z(w) € Z;.

Remark: Binning estimates the conditional expectation as a piecewise constant function

E° (V{T,-H,...,Tn}(TiH) | Z) [w] = f(Z(w)),
where
f(Z(w)) = H,  for k such that Z(w) € 7.

0
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Monte-Carlo Conditional Expectation Estimators
Binning

Let Z(Q) = U, Z;, with Z; disjoint. Estimate the expectation by taking paths which are "nearby™":

EQ (V{T,-+1,...,Tn}(Ti+1) | Z) w] = EQ (V{T,-+1,...,Tn}(Ti+1) | Z € Zk) =: Hk,

where Z; denote the set with Z(w) € Z;.

Continuation versus Exercise Value (pathwise)

2,5 -
2,2 -
2,0 -
1,8 -
1,5 -
1,2 -
1,0 -
0,8 -
0,5 -
0,2 -
0,0 -
-0,2 -

Realized Option Value upon Hold

-0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
Predictor Value upon Exercise
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Monte-Carlo Conditional Expectation Estimators

Regression

Estimate the conditional expectation as the best fit ¥, function to ¥, , data:

EY(Vizy ...t Tis) 1 Z) [0] = f(Z(w), ),

where

-----

a

Lemma (Linear Regression): Let Q" = {wy,...,wy,} be a given sample space, V : Q* —» R and
Y :=(Y1,...,Y)p) : QF = RP given random variables. Furthermore let

JOL-. L ypag, ... ap) = Z a;yi.

Then we have for any o* with XTXo* = XTv

IV = £, a)liyy = minl[V = £, @)l

{ Yi(w)) ... Yp(wy) J [ V(wy) ]
X = : : : V= : :
Yi(wn) ... Yp(wn) V(wn)

If (XTX)~! exists then o* := (XTX)"1xTv.

where
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Monte-Carlo Conditional Expectation Estimators

Regression

Estimate the conditional expectation as the best fit ¥, function to ¥, , data:

EQ(V{Ti+1,...,Tn}(Ti+1)IZ) [w] = f(Z(w),a”),
where

o* = argmin||Vy7.,, . 1,)/(Tir1) — fZ(), D).
(04

Continuation versus Exercise Value (pathwise)

2,5 -
2,2 -
2,0 -
1,8 -
1,5 -
1,2 -
1,0 -
0,8 -
0,5 -
0,2 -
0,0 -
-0,2 -

Realized Option Value upon Hold

-0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
Predictor Value upon Exercise
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Monte-Carlo Conditional Expectation Estimators
Binning (revisited)

Binning is equivalent to a least square regression with piecewise constant basis functions. See
[FO6].

Continuation versus Exercise Value (pathwise)

2,5 -
2,2 -
2,0 -
1,8 -
1,5 -
1,2 -
1,0 -
0,8 -
0,5 -
0,2 -
0,0 -
-0,2 -

Realized Option Value upon Hold

-0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
Predictor Value upon Exercise
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The Foresight Bias
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Foresight Bias: Classification

Notation
Here and in the following we will consider the exercise criteria max(U, E(V | Z)), i.e. V stands for
V:,1 and U stands for U(T;), for some i.

fZ)=ES(V|2)=EWV|2) + ¢
N——
Monte Carlo error

The Foresight Bias
Consider the optimal exercise value max(U, E(V | Z)) where the conditional expectation estimator
has a Monte Carlo error which we denote by €. Then the foresight bias is given by:

E(max(U,E(V | Z) + €) | Z) = max(U,E(V | Z)) + foresightbias.

Note that
E(max(U,E(V | Z) | Z) = E(max(U|z,E(V | 2) | Z)

Conditional to Z the underlying U is a constant: Z contains all information 7, and U is ¥ .-
measurable. We therefore write K := Uz and consider

E(max(K,E(V | Z) + €| Z)
Doesn’t that look familiar?

The foresight bias is the value of the option on the Monte-Carlo error.
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Foresight Bias: Classification

Numerical Removal of the Foresight Bias

The standard approach to remove the foresight bias is to use two independent Monte-Carlo sim-
ulations. One will be used to estimate the exercise criteria (as a functional dependence on some
state variable), the other will be used to calculate the payouts (using the backward algorithm).

The numerical removal of the foresight bias has two disadvantages:

e Numerical removal of the foresight bias slows down the pricing. Two independent Monte-Carlo
simulations of the stochastic processes have to be generated. For some models (e.g. high
dimensional interest rate models like the LIBOR Market Model) the generation of the Monte-

Carlo paths is relatively time consuming.

e Numerical removal of the foresight bias makes the code of the implementation cumbersome.
It is a desired design pattern to separate the stochastic process model and the generation of
the Monte-Carlo paths from product pricing. The structure of the code will likely become less
clear if a second independent simulation has to be created.

Removing foresight bias numerically, the Monte-Carlo error on the conditional expectation
estimator will lead to sub-optimal exercise.

= The Bermudan option price will be biased low.
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Foresight Bias: Classification

Let €;(Z) denote the Monte-Carlo error of E(V | Z), i.e.

J(2)+e€((Z) = E(V|2)+e€(Z) = E(V+¢€(2)]2).
Let e,(Z) denote the Monte-Carlo error of E(V | Z) in an independent simulation.
Foresight Biased Exercise:

U U> f(2)+¢€(2) Option on the
V+e(Z) UZ<F2)+e(2) Monte-Carlo error
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Foresight Bias: Classification

Let €;(Z) denote the Monte-Carlo error of E(V | Z), i.e.

J(2)+e€((Z) = E(V|2)+e€(Z) = E(V+¢€(2)]2).
Let e,(Z) denote the Monte-Carlo error of E(V | Z) in an independent simulation.

Foresight Biased Exercise:

U U> f(2)+¢€(2) Option on the
V+e(Z) UZ<F2)+e(2) Monte-Carlo error

Numerical Removal of Foresight Bias:

U U> f(Z)+e(2) Sub-optimal
V4+e(Z) U< fZ)+e(Z) exercise
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Foresight Bias: Classification

Let €;(Z) denote the Monte-Carlo error of E(V | Z), i.e.

J(2)+e€((Z) = E(V|2)+e€(Z) = E(V+¢€(2)]2).
Let e,(Z) denote the Monte-Carlo error of E(V | Z) in an independent simulation.
Foresight Biased Exercise:

U U> f(2)+¢€(2) Option on the
V+e(Z) UZ<F2)+e(2) Monte-Carlo error

Numerical Removal of Foresight Bias:

U U> f(Z)+e(2) Sub-optimal
V4+e(Z) U< fZ)+e(Z) exercise

Optimal Exercise with Monte-Carlo Error in Payout:

U U > f(2) Desired exercise in
V+e((Z) UZ<F2) Monte-Carlo pricing
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Foresight Bias: Classification

Let €;(Z) denote the Monte-Carlo error of E(V | Z), i.e.

J(2)+e€((Z) = E(V|2)+e€(Z) = E(V+¢€(2)]2).
Let e,(Z) denote the Monte-Carlo error of E(V | Z) in an independent simulation.

Foresight Biased Exercise:

U U>f(Z)+¢(2)
V+e(Z) U< fZ)+¢€(2)

Numerical Removal of Foresight Bias:
U U>f(Z)+e(Z2)
V+elZ) UL fZ)+e(Z)
Optimal Exercise with Monte-Carlo Error in Payout:
U U> f(2)
V+e(Z) UZ<fZ)

Sub-Optimal Exercise:

U U>f(Z)+e(72)
V U<LfZ)+e(Z)
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Foresight Bias

Is the Foresight Bias Negligible!?
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Foresight Bias: Is Foresight Bias Negligible?

Is the Foresight Bias negligible?

An alternative to the numerical removal of the foresight bias is to not remove the foresight bias
at all. This approach may be justified by the fact that the foresight bias will tend to zero as the
number of paths tends to infinity. In addition the foresight bias is rather small, usually it is within
Monte-Carlo errors.

However neglecting foresight bias may create larger relative errors when considering multiple
exercise dates, a book of multiple options with foresight bias, or the aggregation of prices from
independent Monte-Carlo simulation.

e For a single Bermudan option with few exercise dates the foresight bias is of the order of the
Monte-Carlo error of the option itsellf.

e For a single Bermudan option with many exercise dates, the foresight biases induced at each
exercise date may add up, the bias is still of the order of the Monte-Carlo error.

e For a large portfolio the foresight bias may become significant.

e For the aggregation of prices from independent Monte-Carlo simulation the foresight bias may
become significant. (Parallelization Problem)
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Parallelization of Monte-Carlo Pricing of Bermudan Options

Aggregating Foresight Biased Options

However, summing up different options - each with a foresight bias and a Monte-Carlo error - may
change the picture. If two options differ in strike or maturities their Monte-Carlo errors may become
more and more independent.” Consider a book of n options (compound or Bermudan). If the n
options have independent Monte-Carlo errors with standard deviation o the Monte-Carlo error for
the portfolio will be +/n - . But since the foresight bias is a systematic error it will grow linearly in
n, i.e. if the n options have a foresight bias g the book will exhibit a foresight bias of n- 3. Assuming
that for a family of options 8 and o are of the same size we could say that: only if the Monte-Carlo
errors of the single product prices are perfectly correlated we would have that the ratio of foresight
bias to Monte-Carlo error g of a portfolio does not grow with the portfolio size.

This is also obvious from the interpretation of the foresight bias as an option on the (individual)
Monte-Carlo error. The book will contain n such options.” In the end we have that the foresight
bias may likely become significant.*

*As example consider the two payouts min(max(S(T), a;), b1) and min(max(S (T, ay), b,) (i.e. S(T) capped and floored).
If (a1, b1) and (ay, by) are disjoint a sampling of S(T") will (in general) generate independent Monte-Carlo errors for the
two payouts.

"Of course foresight bias may cancel if one averages short options with long options.

*Our test case in [F05] exhibited a foresight bias 0.5 of the Monte-Carlo error. Pricing a book of 16 options may result
in a foresight bias around 2 standard deviations (the 95% quantile).
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Parallelization of Monte-Carlo Pricing of Bermudan Options

Parallelization of Monte-Carlo Pricing of Bermudan Options

Lemma (Parallelization Lemma)

For the pricing of European products (i.e. products that do not involve an optionality with condi-
tional expectation estimator) we have that the pricing error of the average price of two (indepen-
dent) Monte-Carlo simulations with n paths is equal to the pricing error of a single Monte-Carlo
simulation with 2 - n paths.

Thus: We may parallelize the pricing of non-Bermudan products.

k (independent) simulations with n paths = 1 simulation with & - n paths

Remark: This lemma does not hold for Bermudan options.
The Monte-Carlo price of a Bermudan option exhibits either a bias high due to the foresight bias
or, if foresight is removed, a bias low due to the sub-optimal exercise induced by the Monte-Carlo

error on the exercise criteria.

Averaging Bermudan prices of independent Monte-Carlo simulations
will not reduce the systematic error of foresight or sub-optimal exercise.
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Parallelization of Monte-Carlo Pricing of Bermudan Options

Numerical Result: Parallelization of Monte-Carlo Simulation

Repeated pricing with independent Monte-Carlo simulations (different random number seed)

shows the distribution of the Monte-Carlo error.

The foresight bias is a systematic error, it corresponds to a shift of the mean.

Monte Carlo prices of Bermudan option (3000 paths, 5 basisfcns)

0,060

0,055 -
0,050 -
0,045 -
0,040 -
0,035 -
0,030 -
0,025 -

Frequency

0,020 -
0,015 -
0,010 -
0,005 -
0,000 -

Without f.b. removal: 24,036% +/- 0,789%
Numeric f.b. removal: 23,164% +/- 0,751% (f. bias = 0,872%)
Analytic f.b. removal: 22,958% +/- 0,750% (f. bias = 1,078%)

0,215 0,220 0,225 0,230 0,235 0,240 0,245 0,250
Price

Monte Carlo prices of Bermudan option (9000 paths, 5 basisfcns)

0,060

0,055 -
0,050 -
0,045 -
0,040 -
0,035 -
0,030 -
0,025 -
0,020 -
0,015 -
0,010 -
0,005 -

Frequency

0,000

Without f.b. removal: 23,631% +/- 0,450%
Numeric f.b. removal: 23,242% +/- 0,432% (f. bias = 0,389%)
Analytic f.b. removal: 23,175% +/- 0,431% (f. bias = 0,456%)

0,é15 0,220 0,225 0,230 0,235 0,240 0,245 0,250
Price

" Foresight not removed ™ Foresight removed numerically
Foresight removed analytically

" Foresight not removed ™ Foresight removed numerically
Foresight removed analytically
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Foresight Bias

Analytic Calculation
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Foresight Bias: Analytic Calculation

Estimation of the Foresight Bias

We want to asses the foresight bias induced by a Monte-Carlo error € of the conditional expectation
estimator E(V | Z), i.e. we consider the optimal exercise criteria

max(U,E(V | Z) + e).

Conditioned on a given Z = z* we assume that € has normal distribution with mean 0 and standard
deviation o for fixed E(V | Z). Then we have the following result for the foresight bias:

Lemma 1: (Estimation of Foresight Bias)
Given a conditional expectation estimator of E(V|Z) with (conditional) Monte-Carlo error € having

normal distribution with mean 0 and standard deviation o will result in a bias of the conditional
mean of max(K, E(V|Z) + €) given by

u—K - K -
o ¢(—T) + u-K)-(1- CD(—T)) + K —max(K,E(V|Z)) (1)
foresight bias smoothed payout true payout
biased high diffusive part, biased low

where u := E(V|2), ¢(x) := \/%7 exp(—3x?) and @(x) := [ (&) d¢.
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Foresight Bias: Analytic Calculation

Proof:

Let € have Normal distribution with mean 0 and standard deviation o. For a,b € IR we have with
u*:=b-a
E(max(a,b + €)) = E(max(0,b — a + €)) + a = E(max(0, 4™ + €)) + a

=lfoox.qs(x_“*)dxm:lfoo(xw*)-qs(f)dxm
0 O J—u* o

o g u

:f(;(o--x+y*)-¢(x)dx+a

g

=r- )+t (1= () +a,

where we used fx¢(x) dx = ¢(x).
The result follows with b = E(V|Z), a := K, i.e. u* = u - K.
Remark

The bias induced by the Monte-Carlo error of the conditional expectation estimator consists of
two parts: The first part in (1) consists of the systematic one sided bias resulting from the non
linearity of the max(a, b + x) function. The second part is a diffusion of the original payoff function.
The Monte-Carlo error smears out the original payoff. The first part should be attributed to super-
optimal exercise due to foresight, the second part to sub-optimal exercise due to Monte-Carlo
uncertainty.
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Foresight Bias: Analytic Calculation

Foresight Biased Payout Function: Interpretation

_K _K i
o - ¢(—T) + W-K)-(1- (D(—?)) + K — max(K, E(V|Z))

foresight bias smoothed payout true payout
biased high diffusive part, biased low
A

NS

>

x=u-K
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Foresight Bias: Analytic Calculation

Foresight Biased Payout Function: Interpretation

u—K -
o ¢(—T) max(K, E(V|2))
true payout

foresight bias

-

biased high
A
N\
N\
/ot \ S
/ \
Va \
\
\.

; Toes R
x=u-K
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Foresight Bias: Analytic Calculation

Foresight Biased Payout Function: Interpretation

— K ~
(1= K)- (1 = &(=——=)) + K - max(K, E(V|2))

smoothéa payout true payout

diffusive part, biased low

A

0o
0,5

D
N

=
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Foresight Bias: Analytic Calculation

Foresight Biased Payout Function: Interpretation

u—K - K -
ag - ¢(—T) + (W-K)-(1- (D(—?)) + K — max(K,E(V|Z))

foresight bias smoothed payout true payout
biased high diffusive part, biased low
A
Foresight Biased Payout
- /

T
O
)
(©)
v,
09
=3
Y|
wn

/
/ \

/
True (Optimal) Payout >
// - >\ Suboptimal Exercise Payout
5 -Qﬂf. \&k S
Y — 14 V
% Ve }/I/ i\
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Foresight Bias: Analytic Calculation

Foresight Biased Payout Function: Interpretation

_K - K 3
ag - ¢(—T) + u-K)-(1- (D(—T)) + K - {naX(K,lE(VIZ))

foresight bias smoothed payout true payout
biased high diffusive part, biased low
+ A
2.5
y
4
— {4 >
0
X
2,5 25
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Foresight Bias: Analytic Calculation

Foresight Biased Payout Function: Interpretation

_K - K 3
ag - ¢(—T) + (u—-K)-(1- (D(—T)) + K - QlaX(KAP(WZ))

foresight bias smoothed payout true payout

-

biased high diffusive part, biased low
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Foresight Bias

Analytic Correction in a Backward Algorithm
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The Foresight Bias: Analytic Correction of Foresight Bias and Sub-optimality

Foresight Bias Correction

With the notation as in Lemma 1 we define
- K
Bi=o - g(-—)
o
as the foresight bias correction of the optimal exercise criteria

max(K, E(V|2)),

where u := E(V|Z) and o2 is the variance of the Monte-Carlo error ¢ of the estimator .
Sub-optimality Correction

With the notation as in Lemma 1 we define
- K
yi=@u-K)-(1- CD(—T)) — max(0, u — K)
as the suboptimal exercise correction of the optimal exercise criteria

max(K, E(V|2)),

where u := E(V|Z) and o2 is the variance of the Monte-Carlo error ¢ of the estimator u.
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The Foresight Bias: Analytic Correction of Foresight Bias and Sub-optimality
Numerical Implementation

Estimation of foresight and sub-optimality correction:

In each iteration step of the backward algorithm we estimate the foresight bias correction gt and
the sub-optimality correction y*t as follows:

e Calculate u®st = E®*Y(V | Z) using your favored conditional expectation estimator.

e Estimate the Monte-Carlo error o5t

e The exercise boundary is K = Uz

est
-K
o« [ = 0 g

t_
o ¥z - K) - (1 - 04 25) - max (0,4 - K)

Modified backward algorithm induction stepi+1 — ifori=n,...,1:

~

i} e |Virr o U(T)) < EX(VilFT)
Vii==p7 =y 7+ _
U(T;) else.
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Numerical Results
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Numerical Results

Numerical Result: Parallelization of Monte-Carlo Simulation

Repeated pricing with independent Monte-Carlo simulations (different random number seed)

shows the distribution of the Monte-Carlo error.

The foresight bias is a systematic error, it corresponds to a shift of the mean.

Monte Carlo prices of Bermudan option (3000 paths, 5 basisfcns)

0,060

0,055 -
0,050 -
0,045 -
0,040 -
0,035 -
0,030 -
0,025 -

Frequency

0,020 -
0,015 -
0,010 -
0,005 -
0,000 -

Without f.b. removal: 24,036% +/- 0,789%
Numeric f.b. removal: 23,164% +/- 0,751% (f. bias = 0,872%)
Analytic f.b. removal: 22,958% +/- 0,750% (f. bias = 1,078%)

0,215 0,220 0,225 0,230 0,235 0,240 0,245 0,250
Price

Monte Carlo prices of Bermudan option (9000 paths, 5 basisfcns)

0,060

0,055 -
0,050 -
0,045 -
0,040 -
0,035 -
0,030 -
0,025 -

Frequency

0,020 -
0,015 -
0,010 -
0,005 -

0,000

Without f.b. removal: 23,631% +/- 0,450%
Numeric f.b. removal: 23,242% +/- 0,432% (f. bias = 0,389%)
Analytic f.b. removal: 23,175% +/- 0,431% (f. bias = 0,456%)

0,é15 0,220 0,225 0,230 0,235 0,240 0,245 0,250
Price

" Foresight not removed ™ Foresight removed numerically
Foresight removed analytically

" Foresight not removed ™ Foresight removed numerically
Foresight removed analytically
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Numerical Results

Numerical Result: Parallelization of Monte-Carlo Simulation

We compare the aggregation k independent Monte-Carlo simulations with n/k paths for k =
1,2,4,8,16,.... The foresight biased price grows with k. If foresight is removed, the sub-optimality
biased price decays with k. With analytic foresight bias and sub-optimality correction the price is
almost independent of %.

Option price by aggregation (204800 paths total, polynomial regression)

19,50%
19,00%
18,50%

18,00%

Price

17,50%

17,00%

16,50%

1 2 345 10 2030 100 200 1000 1000
Number of independent calculations aggregated

-B- Foresight not removed -®- Foresight removed numerically
Foresight removed analytically
Foresight and suboptimality removed analytically
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