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Abstract. Consider a system

ut + f(u)x = �uxx (1)

of viscous conservation laws. Let � be a pro�le for a shock wave associated

with a simple eigenvalue � of f 0, with end states �(�1) = u�.

Then there are numbers �0; �0(u�; u+) > 0 such that whenever ju+ �

u�j < �0 and �u0 2 L1 satis�es U0 :=
R
�1

�u0(x) dx 2 H2;2, jjU0jjH2;2 < �0,

then the solution u(x; t) to (1) with data u(�; 0) = �+ �u0 exists for all times

t > 0 and has

lim
t!1

sup
x

ju(x; t)� �(x� st)j = 0

(i.e. � is asymptotically stable).

The novelty consists in the absence of any convexity assumption on �;

thus the theorem generalizes a previous result by J. Goodman. In this note we

only sketch the proof of this theorem and focus on motivating the choice of a

new weight function that enables overcoming the technical di�culties caused

by the absence of convexity.

1. Introduction

Consider a system of viscous conservation laws

ut + f(u)x = �uxx (1)

whose inviscid part ut + f(u)x is hyperbolic, i.e. the Jacobian f 0(u) of the ux

function f : Rn ! R
n can be diagonalized over R at any state u. Assume that f 0

has a simple eigenvalue � in a neighborhood of some reference state u� and let �
denote the pro�le of a Laxian shock wave, i.e., � : R ! R

n solves

��0 = h(�) := f(�)� s�� (f(u�)� su�) , �(�1) = u� ,

where u�, u+, s satisfy f(u�)� su� = f(u+)� su+, �(u�) > s > �(u+), and u�,
u+ are close to u�. The following is proved in [F1]:

Theorem 1.1. There are numbers �0; �0(u�; u+) > 0 such that whenever ju� �
u�j < �0 and �u0 2 L1 satis�es U0 :=

R
�1

�u0(x) dx 2 H2;2, jjU0jjH2;2 < �0, then
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the solution u(x; t) to (1) with data u(�; 0) = �+ �u0 exists for all times t > 0 and

has

lim
t!1

sup
x

ju(x; t)� �(x� st)j = 0 .

The same result was previously known by Goodman [G1] under the additional

assumption that the eigenvalue � be convex, i.e. r�r� 6= 0 where Rr = ker(f 0��I).
In other words the novelty of Theorem 1.1 consists in showing the asymptotic sta-

bility of traveling-wave pro�les for small-amplitude shocks associated with possibly

non-convex modes.

In this note we only sketch the proof of Theorem 1.1 and focus on motivating

the choice of a new weight function for the primary �eld that enables overcoming

the technical di�culties caused by the absence of convexity.

The Theorem is restricted to zero total mass, because U0 2 H2;2 impliesR1
�1

�u0(x) dx = 0. A similar result can be obtained for non-zero mass perturbation,

see [F2]. In its proof { using the approach of Szepessy and Xin, [SX] { the same

weight function is essential in di�erent ways.

2. Basic Steps

The proof of Theorem 1.1 consists of a short time existence result and an a-

priori estimate from which global existence and the desired stability result follow.

Focusing on the latter, we consider the di�erence between the solution u�(x; t) =
�(x � st) and a solution u (corresponding to the perturbed initial data � + �u0).
Let �u(x; t) := u(x; t)� �(x� st), then from (1)

�ut + (f(u� + �u)� f(u�))x = ��uxx . (2)

Multiplying (2) and (2)x by �u and integrating
R1
�1

dx,
R T
t0
dt we easily arrive at

jj�u(�; T )jjH1;2 +

Z T

t0

jj�ux(�; t)jjH1;2 dt � C
�jj�u(�; t0)jjH1;2 +

Z T

t0

jj�u(�; t)jjL2 dt
�
: (3)

Without the last term on the right hand side we would have an a-priori estimate

for jj�u(�; T )jjH1;2 and the decay of jj�ux(�; t)jjH1;2 . To absorb the term on the r.h.s.

and to get the decay of jj�u(�; t)jjH1;2 (and hence of supx j�uj) we thus consider the
anti-derivative (or \integrated perturbation")

U(x� st; t) =

Z x

�1

�u(�; t) d� =

Z x

�1

u(�; t)� �(� � st) d� .

We integrate equation (2) and pass to the moving coordinates (x� st; t):

�sUx + Ut + f(�+ Ux)� f(�) = �Uxx

U(x; 0) = U0(x) =

Z x

�1

u(�; 0)� �(�) d� .



Stability of general shock pro�les 3

By using Taylor expansion

f(�+ Ux)� f(�) = f 0(�)Ux � F (�; Ux)

we thus arrive at the so called integrated equation

Ut + h0(�)Ux � �Uxx = F (�; Ux) (4)

U(�; 0) = U0 =

Z �

�1

u(x; 0)� �(x) dx ,

where h0 = f 0 � sI. Together with (3) it is thus su�cient to show

jjU(�; T )jj2L2 +

Z T

t0

jjUx(�; t)jj2L2 dt � CjjU(�; t0)jj2L2 , (5)

which leads to

jjU(�; T )jj2H2;2 +

Z T

t0

jjUx(�; t)jj2H2;2 dt � CjjU(�; t0)jj2H2;2 . (6)

From the above, global existence can be obtained and thus, using (6) with T =1,

we get the existence of a sequence (tn) with tn !1 and

jjUx(�; tn)jj2L2 ! 0 ,

Z 1

tn

jjUx(�; t)jj2L2
dt! 0 . (7)

From (3) (with t0 = tn) and (7) we get

lim
t!1

sup
x

j�(x � st)� u(x; t)j2 = lim
t!1

sup
x

jUx(x; t)j2

� lim
t!1

jjUxx(�; t)jj2L2 � jjUx(�; t)jj2L2 � lim
t!1

CjjUx(�; t)jj2L2

(3)

� C lim
t!1

�jjUx(�; tn)jj2L2 +

tZ

tn

jjUx(�; �)jj2L2

�! 0 (tn !1) .

Thus we concentrate on the proof of (5) where a weight function is essential in the

non-convex case.

3. Motivation of the weight function

Our choice of the weight function is inspired by the choice of Matsumura and

Nishihara for the non-convex scalar case [MN]. Here we present the proof of (5)

for the convex and non-convex scalar case to motivate the choice of our weight

and to discuss some di�culties that arise in the case of a non-convex system.

For simplicity we assume F � 0 in (4):

Ut + h0(�)Ux � �Uxx = 0 . (8)
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3.1. The scalar case with convex ux

Multiplying (8) by U and integrating by parts
R1
�1

dx we obtain

1

2

@

@t

Z 1

�1

jU j2 dx+
Z 1

�1

Uh0(�)Ux + �(Ux)
2 dx = 0

and by integrating
R T
t0
dt

1

2
jjU(�; T )jj2L2 +

Z T

t0

Z 1

�1

�1

2
(h0(�))xU

2 dx dt

+

Z T

t0

jjUxjj2L2 dt � 1

2
jjU(�; t0)jj2L2 .

Together with the assumption of convexity �(h0(�))x > 0, the inequality above

implies (5).

3.2. The scalar case with non-convex ux

Multiplying (8) by U � w, where w = w(x), and integrating by parts
R1
�1

dx we

obtain

1

2

@

@t

Z 1

�1

(wjU j2) dx+
Z 1

�1

Uwh0(�)Ux + �UwxUx + �w(Ux)
2 dx = 0

and by integrating
R T
t0
dt

1

2
jjpwU(�; T )jj2L2 +

Z T

t0

Z 1

�1

�1

2
(wh0(�) + wx)xU

2 dx dt

+

Z T

t0

jjpwUxjj2L2 dt � 1

2
jjpwU(�; t0)jj2L2 .

Due to the presence of the weight w we get � 1
2
(wh0(�) + wx)x in place of

� 1
2
(h0(�))x. Therefore the task is to �nd a positive w such that:

�1

2
(wh0(�) + �wx)x > 0 .

Using the ansatz w(x) = ~w(�(x)) we get

�1

2
(wh0(�) + �wx)x = �1

2
( ~w(�)h0(�) + � ~w0(�)�x)x (9)

= �1

2
(( ~wh)0(�))x = �1

2
( ~wh)00(�)�x

and by choosing

~w(u) = � (u� u+)(u� u�)

h(u)
� sign�x > 0 (10)

we obtain

�1

2
(wh0(�) + �wx)x = j�xj .
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Obviously, in the case of a system (9) is not valid and (10) has no meaning,

because then h(u) is a vector.

4. Weight for the system case with non-convex mode

Like Goodman [G1] we diagonalize h0(�). As f 0 (and hence h0) is R-diagonalizable
in a neighborhood of the reference state u� comprising the values of �, we �nd

smooth matrix valued functions

L(x) = ~L(�(x)), R(x) = ~R(�(x))

such that LR � I and

L(h0(�))R = diag(�1; : : : ; �n) ,

where

�p = �� s , �i < 0 < �j (i < p < j)

We substitute U =: RV in (4), multiply by V TWL and integrate
R1
�1

dx,

where W = diag(1; : : : ; 1; w; 1; : : : ; 1):

1Z

�1

1

2

@

@t
(V TWV ) + V TW�Vx + V TW�LRxV

+�(V TWL)x(RV )x � V TWLF (�; (RV )x) dx = 0 .

We group the terms above as

(A1) 1
2
@
@t
(V TWV )

(A2) (w�p + �wx)Vp(Vp)x

(A3)
P

k 6=p(� 1
2
(�k)x + lk(rk)x�k)(Vk)

2

(A4) �w((Vp)x)
2 + �

P
k 6=p((Vk)x)

2

(B1)
P

j 6=p(w�p + �wx)lp(rj)xVpVj

(B2)
P

i6=p;i 6=j �ili(rj)xViVj

(B3) �V TWLxRVx + �V T
x WLRxV

(B4) �V TWLxRxV

(B5) �V TWLF (�; (RV )x)

where L = (l1; : : : ; ln)
T and R = (r1; : : : ; rn).

The terms (B1){(B5) have to be estimated; they mainly consist of coupling

terms. (A1){(A4) are what we expect from a decoupled system. In particular (A2)

{ the term referring to the primary �eld { corresponds to the scalar model case of

Section 3.2. Our �rst task is thus to \�nd" a positive weight w such that

�1

2
(w�p + �wx) = j�xj .

For this we can prove
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Lemma 4.1. For � := ju� � u+j su�ciently small there exists w : R ! R with

inf
x
w(x), inf

x
(1=w(x)) > 0 and

�1

2
(w�p + �wx)x = j�xj (11)

Proof. For �xed x0, w0 let w be the solution of

�wx + w�p = �2
xZ

x0

j�xj dx (12)

w(0) = w0;

i. e.,

w(x) = e�
R
x

0

�p(�)

�
d�

0
@w0 �

xZ

0

e
R
y

0

�p(�)

�
d� 2

�

2
4

yZ

x0

j�xj d�
3
5 dy

1
A . (13)

We now choose x0 such that

I(x0) �
1Z

�1

e
R
y

0

�p(�)

�
d� 2

�

2
4

yZ

x0

j�xj d�
3
5 dy = 0 ,

and correspondingly

w0 =

�1Z

0

e
R
y

0

�p(�)

�
d� 2

�

2
4

yZ

x0

j�xj d�
3
5 dy, .

By �p(�1) > 0 > �p(1) the function I is well de�ned and I(�1) > 0 > I(1)

implies the existence of x0. This choice is equivalent to the boundedness of w.
By (13)

lim
x!�1

e
R
x

0

�p

�
d� � w(x) = 0 ,

by (12)

�
e
R
x

0

�p

�
d� � w

�0
=
�2
�
e
R
x

0

�p

�
d�

xZ

x0

j�xj dx

8<
:

> 0 for x < x0
= 0 for x = x0
< 0 for x > x0 .

Consequently e
R
0

�p

�
d� � w > 0 and thus w > 0.

As w(�1) = �2 R �1
x0

j�xjdx=�p(�1) > 0 by (12), both inf w and inf(1=w) are

positive. �

We now turn to the discussion of the coupling terms. Guided by the explicit

choice (10) which was used for the non-convex scalar case we see that if the ux

h(�) is of the order ��3 (a natural thing in the non-convex case) then the weight

w is of the order ��1. On the other hand { for a system � has to be chosen small

to control the coupling between the di�erent �elds. Although this seems to cause
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di�culties, taking a closer look to our grouping of the coupling terms, we see that

either w appears as w�p + �wx or as w�x where both can be estimated to be of

order � or �2. In the scalar case of Section 3.2 this can be explicitly veri�ed. For

(11) we can prove

Lemma 4.2. For the weight function w of Lemma 4.1 the following holds:

jw�p + �wxj � O(1)ju+ � u�j (14)

j�(w�x)xj = j(wh(�))xj � O(1)ju+ � u�j � j�xj (15)

j�w�xj = jwh(�)j � O(1)ju+ � u�j2 (16)

For the proof we refer to [F1].

By Lemma 4.2 the proof of (5) can be completed. E.g. (11) gives positivity

of (A2) and (14), (15) and (16) enable estimating (B1), (B3) and (B4). With (A3)

and (B2) we deal as suggested in [G2] for the case of a convex system.
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